class PolyRegression extends Predictor with Error
The PolyRegression
class supports polynomial regression. In this case,
't' is expanded to [1, t, t2 ... tk]. Fit the parameter vector 'b' in the
regression equation
y = b dot x + e = b_0 + b_1 * t + b_2 * t2 ... b_k * tk + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector
b = x_pinv * y
where 'x_pinv' is the pseudo-inverse.
- See also
www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx
- Alphabetic
- By Inheritance
- PolyRegression
- Error
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
PolyRegression(t: VectorD, y: VectorD, k: Int, technique: RegTechnique = QR)
- t
the input vector: t_i expands to x_i = [1, t_i, t_i2, ... t_ik]
- y
the response vector
- k
the order of the polynomial
- technique
the technique used to solve for b in x.t*x*b = x.t*y
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
backElim(): (Int, VectoD, VectoD)
Perform backward elimination to remove the least predictive variable from the model, returning the variable to eliminate, the new parameter vector, the new R-squared value and the new F statistic.
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(): Unit
Compute the error and useful diagnostics.
Compute the error and useful diagnostics.
- Definition Classes
- PolyRegression → Predictor
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector FIX - implement in classes
- Definition Classes
- Predictor
-
def
expand(t: Double): VectorD
Expand the scalar 't' into a vector of powers of 't': [1, t, t2 ... tk].
Expand the scalar 't' into a vector of powers of 't': [1, t, t2 ... tk].
- t
the scalar to expand into the vector
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit including 'rSquared'.
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
parameter: VectoD
Return the vector of parameter/coefficient values.
Return the vector of parameter/coefficient values.
- Definition Classes
- Predictor
-
def
predict(z: VectoD): Double
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
- z
the new vector to predict
- Definition Classes
- PolyRegression → Predictor
-
def
predict(z: Double): Double
Predict the value of y = f(z) by evaluating the formula y = b dot expand (z), e.g., (b_0, b_1, b_2) dot (1, z, z^2).
Predict the value of y = f(z) by evaluating the formula y = b dot expand (z), e.g., (b_0, b_1, b_2) dot (1, z, z^2).
- z
the new scalar to predict
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- Predictor
- val rg: Regression
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(yy: VectoD): Regression
Retrain the predictor by fitting the parameter vector (b-vector) in the multiple regression equation yy = b dot x + e = [b_0, ...
Retrain the predictor by fitting the parameter vector (b-vector) in the multiple regression equation yy = b dot x + e = [b_0, ... b_k] dot [1, t, t2 ... tk] + e using the least squares method.
- yy
the new response vector
- Definition Classes
- PolyRegression → Predictor
-
def
train(): Regression
Train the predictor by fitting the parameter vector (b-vector) in the regression equation y = b dot x + e = [b_0, ...
Train the predictor by fitting the parameter vector (b-vector) in the regression equation y = b dot x + e = [b_0, ... b_k] dot [1, t, t2 ... tk] + e using the least squares method.
-
def
vif: VectorD
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables.
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'xj' can be predicted from the other variables, so 'xj' is a candidate for removal from the model.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- val x: MatrixD