Packages

object Radau extends Integrator

The Radau object implements Radau IIA, which is a simple Ordinary Differential Equation 'ODE' solver for moderately stiff systems. Solve for 'y' given

d/dt y = f(t, y).

Linear Supertypes
Integrator, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Radau
  2. Integrator
  3. Error
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. val defaultStepSize: Double

    The default step size for the t dimension

    The default step size for the t dimension

    Attributes
    protected
    Definition Classes
    Integrator
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. val error: Double

    Estimate of the error in calculating y

    Estimate of the error in calculating y

    Attributes
    protected
    Definition Classes
    Integrator
  10. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  12. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. def getError: Double

    Get the error estimate.

    Get the error estimate.

    Definition Classes
    Integrator
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def integrate(f: Derivative, y0: Double, t: Double, t0: Double = 0.0, step: Double = defaultStepSize): Double

    f

    the derivative function f(t, y)

    y0

    the initial value of the y-function at time t0, y0 = y(t0)

    t

    the time value at which to compute y(t)

    t0

    the initial time

    step

    the step size

    Definition Classes
    RadauIntegrator
  16. def integrateV(f: Array[Derivative], y0: VectorD, t: Double, t0: Double = 0.0, step: Double = defaultStepSize): VectorD

    Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions.

    Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions. Each derivative function takes a scalar t and a scalar y_j = y(j).

    f

    the array of derivative functions [f_j(t, y_j)]

    y0

    the initial value vector, y0 = y(t0)

    t

    the time value at which to compute y(t)

    t0

    the initial time

    step

    the step size

    Definition Classes
    Integrator
  17. def integrateVV(f: Array[DerivativeV], y0: VectorD, t: Double, t0: Double = 0.0, step: Double = defaultStepSize): VectorD

    f

    the array of derivative functions [f_j(t, y)]

    y0

    the initial value vector, y0 = y(t0)

    t

    the time value at which to compute y(t)

    t0

    the initial time

    step

    the step size

    Definition Classes
    RadauIntegrator
  18. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  19. def jacobian(f: Array[DerivativeV], y: VectorD, t: Double): MatrixD

    Compute the Jacobian matrix for a vector-valued derivative function represented as an array of scalar-valued functions.

    Compute the Jacobian matrix for a vector-valued derivative function represented as an array of scalar-valued functions. The i-th row in the matrix is the gradient of the i-th function.

    f

    the array of functions whose Jacobian is sought

    y

    the point (vector) at which to estimate the Jacobian

  20. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  22. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  23. def solve(f: Array[DerivativeV], yn_1: VectorD, fn_1: VectorD, tn_1: Double, tn: Double, h: Double): Unit

  24. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  25. def toString(): String
    Definition Classes
    AnyRef → Any
  26. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from Integrator

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped