object Radau extends Integrator
The Radau
object implements Radau IIA, which is a simple Ordinary Differential
Equation 'ODE' solver for moderately stiff systems. Solve for 'y' given
d/dt y = f(t, y).
- Alphabetic
- By Inheritance
- Radau
- Integrator
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
val
defaultStepSize: Double
The default step size for the t dimension
The default step size for the t dimension
- Attributes
- protected
- Definition Classes
- Integrator
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
error: Double
Estimate of the error in calculating y
Estimate of the error in calculating y
- Attributes
- protected
- Definition Classes
- Integrator
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getError: Double
Get the error estimate.
Get the error estimate.
- Definition Classes
- Integrator
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
integrate(f: Derivative, y0: Double, t: Double, t0: Double = 0.0, step: Double = defaultStepSize): Double
- f
the derivative function f(t, y)
- y0
the initial value of the y-function at time t0, y0 = y(t0)
- t
the time value at which to compute y(t)
- t0
the initial time
- step
the step size
- Definition Classes
- Radau → Integrator
-
def
integrateV(f: Array[Derivative], y0: VectorD, t: Double, t0: Double = 0.0, step: Double = defaultStepSize): VectorD
Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions.
Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions. Each derivative function takes a scalar t and a scalar y_j = y(j).
- f
the array of derivative functions [f_j(t, y_j)]
- y0
the initial value vector, y0 = y(t0)
- t
the time value at which to compute y(t)
- t0
the initial time
- step
the step size
- Definition Classes
- Integrator
-
def
integrateVV(f: Array[DerivativeV], y0: VectorD, t: Double, t0: Double = 0.0, step: Double = defaultStepSize): VectorD
- f
the array of derivative functions [f_j(t, y)]
- y0
the initial value vector, y0 = y(t0)
- t
the time value at which to compute y(t)
- t0
the initial time
- step
the step size
- Definition Classes
- Radau → Integrator
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
jacobian(f: Array[DerivativeV], y: VectorD, t: Double): MatrixD
Compute the Jacobian matrix for a vector-valued derivative function represented as an array of scalar-valued functions.
Compute the Jacobian matrix for a vector-valued derivative function represented as an array of scalar-valued functions. The i-th row in the matrix is the gradient of the i-th function.
- f
the array of functions whose Jacobian is sought
- y
the point (vector) at which to estimate the Jacobian
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def solve(f: Array[DerivativeV], yn_1: VectorD, fn_1: VectorD, tn_1: Double, tn: Double, h: Double): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )