class Hungarian extends AnyRef
The Hungarian
is an O(n^3) implementation of the Hungarian algorithm
(or Kuhn-Munkres algorithm). Find the maximum cost set of pairings between
'm' x-nodes (workers) and 'n' y-nodes (jobs) such that each worker is assigned
to one job and each job has at most one worker assigned.
It solves the maximum-weighted bipartite graph matching problem.
maximize sum i = 0 .. m-1 { cost(x_i, y_i) }
Caveat: only works if 'm <= n' (i.e., there is at least one job for every worker).
- Alphabetic
- By Inheritance
- Hungarian
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Hungarian(cost: MatrixD)
- cost
the cost matrix: cost(x, y) = cost of assigning worker to job
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
solve(): Double
The main procedure to solve an assignment problem by finding initial pairings and then finding augmenting paths to improve the pairings/assignments.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )