Packages

class Hungarian extends AnyRef

The Hungarian is an O(n^3) implementation of the Hungarian algorithm (or Kuhn-Munkres algorithm). Find the maximum cost set of pairings between 'm' x-nodes (workers) and 'n' y-nodes (jobs) such that each worker is assigned to one job and each job has at most one worker assigned. It solves the maximum-weighted bipartite graph matching problem.

maximize sum i = 0 .. m-1 { cost(x_i, y_i) }

Caveat: only works if 'm <= n' (i.e., there is at least one job for every worker).

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Hungarian
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Hungarian(cost: MatrixD)

    cost

    the cost matrix: cost(x, y) = cost of assigning worker to job

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. def solve(): Double

    The main procedure to solve an assignment problem by finding initial pairings and then finding augmenting paths to improve the pairings/assignments.

  16. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  17. def toString(): String
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped