class DualSim2CAR extends GraphMatcher
The DualSim2CAR
class provides a second implementation for Dual Graph Simulation.
It differs from DualSim
by not using inverse adjacency sets ('pa') in
order to save space. It also enforces the cardinality restriction.
- Alphabetic
- By Inheritance
- DualSim2CAR
- GraphMatcher
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
CHECK: Int
- Attributes
- protected
- Definition Classes
- GraphMatcher
-
val
LIMIT: Double
- Attributes
- protected
- Definition Classes
- GraphMatcher
-
val
SELF_LOOPS: Boolean
- Attributes
- protected
- Definition Classes
- GraphMatcher
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bijections(): Set[Array[Int]]
Apply a graph pattern matching algorithm to find subgraphs of data graph 'g' that isomorphically match query graph 'q'.
Apply a graph pattern matching algorithm to find subgraphs of data graph 'g' that isomorphically match query graph 'q'. These are represented by a set of single-valued bijections {'psi'} where each 'psi' function maps each query graph vertex 'u' to a data graph vertices 'v'.
- Definition Classes
- GraphMatcher
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
disjoint(set1: Set[Int], set2: Set[Int]): Boolean
Determine whether two sets are disjoint, i.e., have an empty intersection.
Determine whether two sets are disjoint, i.e., have an empty intersection.
- set1
the first set
- set2
the second set
- Definition Classes
- GraphMatcher
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
feasibleMates(): Array[Set[Int]]
Create an initial array of feasible mappings 'phi' from each query vertex 'u' to the corresponding set of data graph vertices '{v}' whose label matches 'u's.
Create an initial array of feasible mappings 'phi' from each query vertex 'u' to the corresponding set of data graph vertices '{v}' whose label matches 'u's.
- Definition Classes
- GraphMatcher
-
def
feasibleMatesWithSets(): Array[Set[Int]]
Return the vertices in the data graph 'g' that match the vertices in the query graph 'q'.
Return the vertices in the data graph 'g' that match the vertices in the query graph 'q'. The matching involves a label match and a first check of children and parents.
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
mappings(): Array[Set[Int]]
Apply a graph pattern matching algorithm to find the mappings from the query graph 'q' to the data graph 'g'.
Apply a graph pattern matching algorithm to find the mappings from the query graph 'q' to the data graph 'g'. These are represented by a multi-valued function 'phi' that maps each query graph vertex 'u' to a set of data graph vertices '{v}'.
- Definition Classes
- DualSim2CAR → GraphMatcher
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
overlaps(set1: Set[Int], set2: Set[Int]): Boolean
Determine whether two sets overlap, i.e., have a non-empty intersection.
Determine whether two sets overlap, i.e., have a non-empty intersection.
- set1
the first set
- set2
the second set
- Definition Classes
- GraphMatcher
-
def
prune(phi: Array[Set[Int]]): Array[Set[Int]]
Given the mappings 'phi' produced by the 'feasibleMateswithSets' method, eliminate mappings 'u -> v' when (1) v's children fail to match u's or (2) v's parents fail to match u's.
Given the mappings 'phi' produced by the 'feasibleMateswithSets' method, eliminate mappings 'u -> v' when (1) v's children fail to match u's or (2) v's parents fail to match u's.
- phi
array of mappings from a query vertex u to { graph vertices v }
- Definition Classes
- DualSim2CAR → GraphMatcher
-
val
qRange: Range
- Attributes
- protected
- Definition Classes
- GraphMatcher
-
def
showMappings(phi: Array[Set[Int]]): Unit
Show the mappings between a query graph vertex u and a set of data graph vertices {v}.
Show the mappings between a query graph vertex u and a set of data graph vertices {v}.
- phi
the set-valued mapping function
- Definition Classes
- GraphMatcher
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(name: String, ans: Array[Set[Int]] = null): Unit
Test the graph pattern matcher.
Test the graph pattern matcher.
- name
the name of graph pattern matcher
- ans
the correct answer
- Definition Classes
- GraphMatcher
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated