Packages

class SparseMatrixI extends MatriI with Error with Serializable

The SparseMatrixI class stores and operates on Matrices of Ints. Rather than storing the matrix as a 2 dimensional array, it is stored as an array of sorted-linked-maps, which record all the non-zero values for each particular row, along with their j-index as (j, v) pairs.

Linear Supertypes
Serializable, Serializable, MatriI, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SparseMatrixI
  2. Serializable
  3. Serializable
  4. MatriI
  5. Error
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SparseMatrixI(b: MatrixI)

    Construct a sparse matrix and assign values from dense matrix MatrixI 'b'.

    Construct a sparse matrix and assign values from dense matrix MatrixI 'b'.

    b

    the matrix of values to assign

  2. new SparseMatrixI(b: SparseMatrixI)

    Construct a sparse matrix and assign values from matrix 'b'.

    Construct a sparse matrix and assign values from matrix 'b'.

    b

    the matrix of values to assign

  3. new SparseMatrixI(dim: (Int, Int), u: Int*)

    Construct a matrix from repeated values.

    Construct a matrix from repeated values.

    dim

    the (row, column) dimensions

    u

    the repeated values

  4. new SparseMatrixI(dim1: Int, dim2: Int, x: Int)

    Construct a 'dim1' by 'dim2' sparse matrix and assign each element the value 'x'.

    Construct a 'dim1' by 'dim2' sparse matrix and assign each element the value 'x'.

    dim1

    the row dimension

    dim2

    the column dimension

    x

    the scalar value to assign

  5. new SparseMatrixI(dim1: Int)

    Construct a 'dim1' by 'dim1' square sparse matrix.

    Construct a 'dim1' by 'dim1' square sparse matrix.

    dim1

    the row and column dimension

  6. new SparseMatrixI(dim1: Int, dim2: Int, u: Array[RowMap])

    Construct a 'dim1' by 'dim2' sparse matrix from an array of sorted-linked-maps.

    Construct a 'dim1' by 'dim2' sparse matrix from an array of sorted-linked-maps.

    dim1

    the row dimension

    dim2

    the column dimension

    u

    the array of sorted-linked-maps

  7. new SparseMatrixI(d1: Int, d2: Int)

    d1

    the first/row dimension

    d2

    the second/column dimension

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. def *(x: Int): SparseMatrixI

    Multiply 'this' sparse matrix by scalar 'x'.

    Multiply 'this' sparse matrix by scalar 'x'.

    x

    the scalar to multiply by

    Definition Classes
    SparseMatrixIMatriI
  4. def *(u: VectoI): VectorI

    Multiply 'this' sparse matrix by vector 'u' (vector elements beyond 'dim2' ignored).

    Multiply 'this' sparse matrix by vector 'u' (vector elements beyond 'dim2' ignored).

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixIMatriI
  5. def *(b: MatriI): SparseMatrixI

    Multiply 'this' sparse matrix by dense matrix 'b'.

    Multiply 'this' sparse matrix by dense matrix 'b'.

    b

    the matrix to multiply by (requires 'sameCrossDimensions')

    Definition Classes
    SparseMatrixIMatriI
  6. def *(b: SparseMatrixI): SparseMatrixI

    Multiply 'this' sparse matrix by sparse matrix 'b', by performing a merge operation on the rows on 'this' sparse matrix and the transpose of the 'b' matrix.

    Multiply 'this' sparse matrix by sparse matrix 'b', by performing a merge operation on the rows on 'this' sparse matrix and the transpose of the 'b' matrix.

    b

    the matrix to multiply by (requires 'sameCrossDimensions')

  7. def **(u: VectoI): SparseMatrixI

    Multiply 'this' sparse matrix by vector 'u' to produce another matrix 'a_ij * u_j'.

    Multiply 'this' sparse matrix by vector 'u' to produce another matrix 'a_ij * u_j'.

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixIMatriI
  8. def **(b: MatriI): MatriI

    Multiply 'this' matrix by matrix 'b' elementwise (Hadamard product).

    Multiply 'this' matrix by matrix 'b' elementwise (Hadamard product).

    b

    the matrix to multiply by

    Definition Classes
    MatriI
    See also

    en.wikipedia.org/wiki/Hadamard_product_(matrices) FIX - remove ??? and implement in all implementing classes

  9. def **:(u: VectoI): SparseMatrixI

    Multiply vector 'u' by 'this' matrix to produce another matrix 'u_i * a_ij'.

    Multiply vector 'u' by 'this' matrix to produce another matrix 'u_i * a_ij'. E.g., multiply a diagonal matrix represented as a vector by a matrix. This operator is right associative.

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixIMatriI
  10. def **=(u: VectoI): SparseMatrixI

    Multiply in-place 'this' sparse matrix by vector 'u' to produce another matrix 'a_ij * u_j'.

    Multiply in-place 'this' sparse matrix by vector 'u' to produce another matrix 'a_ij * u_j'.

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixIMatriI
  11. def *:(u: VectoI): VectoI

    Multiply (row) vector 'u' by 'this' matrix.

    Multiply (row) vector 'u' by 'this' matrix. Note '*:' is right associative. vector = vector *: matrix

    u

    the vector to multiply by

    Definition Classes
    MatriI
  12. def *=(x: Int): SparseMatrixI

    Multiply in-place 'this' sparse matrix by scalar 'x'.

    Multiply in-place 'this' sparse matrix by scalar 'x'.

    x

    the scalar to multiply by

    Definition Classes
    SparseMatrixIMatriI
  13. def *=(b: MatriI): SparseMatrixI

    Multiply in-place 'this' sparse matrix by dense matrix 'b'.

    Multiply in-place 'this' sparse matrix by dense matrix 'b'.

    b

    the matrix to multiply by (requires square and 'sameCrossDimensions')

    Definition Classes
    SparseMatrixIMatriI
  14. def *=(b: SparseMatrixI): SparseMatrixI

    Multiply in-place 'this' sparse matrix by sparse matrix 'b', by performing a merge operation on the rows on 'this' sparse matrix and the transpose of the 'b' matrix.

    Multiply in-place 'this' sparse matrix by sparse matrix 'b', by performing a merge operation on the rows on 'this' sparse matrix and the transpose of the 'b' matrix.

    b

    the matrix to multiply by (requires square and 'sameCrossDimensions')

  15. def +(x: Int): MatrixI

    Add 'this' sparse matrix and scalar 'x'.

    Add 'this' sparse matrix and scalar 'x'. Note: every element will be likely filled, hence the return type is a dense matrix.

    x

    the scalar to add

    Definition Classes
    SparseMatrixIMatriI
  16. def +(u: VectoI): SparseMatrixI

    Add 'this' sparse matrix and (row) vector 'u'.

    Add 'this' sparse matrix and (row) vector 'u'.

    u

    the vector to add

    Definition Classes
    SparseMatrixIMatriI
  17. def +(b: MatriI): SparseMatrixI

    Add 'this' sparse matrix and matrix 'b'.

    Add 'this' sparse matrix and matrix 'b'. 'b' may be any subtype of MatriI. Note, subtypes of MatriI should also implement a more efficient version, e.g., def + (b: SparseMatrixI): SparseMatrixI.

    b

    the matrix to add (requires 'sameCrossDimensions')

    Definition Classes
    SparseMatrixIMatriI
  18. def +(b: SparseMatrixI): SparseMatrixI

    Add 'this' sparse matrix and sparse matrix 'b'.

    Add 'this' sparse matrix and sparse matrix 'b'.

    b

    the matrix to add (requires 'sameCrossDimensions')

  19. def ++(b: MatriI): SparseMatrixI

    Concatenate (row-wise) 'this' matrix and matrix 'b'.

    Concatenate (row-wise) 'this' matrix and matrix 'b'.

    b

    the matrix to be concatenated as the new last rows in new matrix

    Definition Classes
    SparseMatrixIMatriI
  20. def ++^(b: MatriI): SparseMatrixI

    Concatenate (column-wise) 'this' matrix and matrix 'b'.

    Concatenate (column-wise) 'this' matrix and matrix 'b'.

    b

    the matrix to be concatenated as the new last columns in new matrix

    Definition Classes
    SparseMatrixIMatriI
  21. def +:(u: VectoI): SparseMatrixI

    Concatenate (row) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.

    Concatenate (row) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.

    u

    the vector to be prepended as the new first row in new matrix

    Definition Classes
    SparseMatrixIMatriI
  22. def +=(x: Int): SparseMatrixI

    Add in-place 'this' sparse matrix and scalar 'x'.

    Add in-place 'this' sparse matrix and scalar 'x'.

    x

    the scalar to add

    Definition Classes
    SparseMatrixIMatriI
  23. def +=(u: VectoI): SparseMatrixI

    Add in-place this matrix and (row) vector 'u'.

    Add in-place this matrix and (row) vector 'u'.

    u

    the vector to add

    Definition Classes
    SparseMatrixIMatriI
  24. def +=(b: MatriI): SparseMatrixI

    Add in-place 'this' sparse matrix and matrix 'b'.

    Add in-place 'this' sparse matrix and matrix 'b'.

    b

    the matrix to add (requires 'sameCrossDimensions')

    Definition Classes
    SparseMatrixIMatriI
  25. def +=(b: SparseMatrixI): SparseMatrixI

    Add in-place 'this' sparse matrix and sparse matrix 'b'.

    Add in-place 'this' sparse matrix and sparse matrix 'b'.

    b

    the matrix to add (requires 'sameCrossDimensions')

  26. def +^:(u: VectoI): SparseMatrixI

    Concatenate (column) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.

    Concatenate (column) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.

    u

    the vector to be prepended as the new first column in new matrix

    Definition Classes
    SparseMatrixIMatriI
  27. def -(x: Int): MatrixI

    From 'this' sparse matrix subtract scalar 'x'.

    From 'this' sparse matrix subtract scalar 'x'. Note: every element will be likely filled, hence the return type is a dense matrix.

    x

    the scalar to subtract

    Definition Classes
    SparseMatrixIMatriI
  28. def -(u: VectoI): SparseMatrixI

    From this sparse matrix subtract (row) vector 'u'.

    From this sparse matrix subtract (row) vector 'u'.

    u

    the vector to subtract

    Definition Classes
    SparseMatrixIMatriI
  29. def -(b: MatriI): SparseMatrixI

    From 'this' sparse matrix subtract matrix 'b'.

    From 'this' sparse matrix subtract matrix 'b'.

    b

    the matrix to subtract (requires 'sameCrossDimensions')

    Definition Classes
    SparseMatrixIMatriI
  30. def -(b: SparseMatrixI): SparseMatrixI

    From 'this' sparse matrix subtract matrix 'b'.

    From 'this' sparse matrix subtract matrix 'b'.

    b

    the sparse matrix to subtract (requires 'sameCrossDimensions')

  31. def -=(x: Int): SparseMatrixI

    From 'this' sparse matrix subtract in-place scalar 'x'.

    From 'this' sparse matrix subtract in-place scalar 'x'.

    x

    the scalar to subtract

    Definition Classes
    SparseMatrixIMatriI
  32. def -=(u: VectoI): SparseMatrixI

    From this sparse matrix subtract in-place (row) vector 'u'.

    From this sparse matrix subtract in-place (row) vector 'u'.

    u

    the vector to subtract

    Definition Classes
    SparseMatrixIMatriI
  33. def -=(b: MatriI): SparseMatrixI

    From 'this' sparse matrix subtract in-place matrix 'b'.

    From 'this' sparse matrix subtract in-place matrix 'b'.

    b

    the matrix to subtract (requires 'sameCrossDimensions')

    Definition Classes
    SparseMatrixIMatriI
  34. def -=(b: SparseMatrixI): SparseMatrixI

    From 'this' sparse matrix subtract in-place sparse matrix 'b'.

    From 'this' sparse matrix subtract in-place sparse matrix 'b'.

    b

    the sparse matrix to subtract (requires 'sameCrossDimensions')

  35. def /(x: Int): SparseMatrixI

    Divide 'this' sparse matrix by scalar 'x'.

    Divide 'this' sparse matrix by scalar 'x'.

    x

    the scalar to divide by

    Definition Classes
    SparseMatrixIMatriI
  36. def /=(x: Int): SparseMatrixI

    Divide in-place 'this' sparse matrix by scalar 'x'.

    Divide in-place 'this' sparse matrix by scalar 'x'.

    x

    the scalar to divide by

    Definition Classes
    SparseMatrixIMatriI
  37. def :+(u: VectoI): SparseMatrixI

    Concatenate 'this' matrix and (row) vector 'u', i.e., append 'u' to 'this'.

    Concatenate 'this' matrix and (row) vector 'u', i.e., append 'u' to 'this'.

    u

    the vector to be appended as the new last row in new matrix

    Definition Classes
    SparseMatrixIMatriI
  38. def :^+(u: VectoI): SparseMatrixI

    Concatenate 'this' matrix and (column) vector 'u', i.e., append 'u' to 'this'.

    Concatenate 'this' matrix and (column) vector 'u', i.e., append 'u' to 'this'.

    u

    the vector to be appended as the new last column in new matrix

    Definition Classes
    SparseMatrixIMatriI
  39. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  40. def apply(ir: Range, jr: Range): SparseMatrixI

    Get a slice this matrix row-wise on range 'ir' and column-wise on range 'jr'.

    Get a slice this matrix row-wise on range 'ir' and column-wise on range 'jr'. Ex: b = a(2..4, 3..5)

    ir

    the row range

    jr

    the column range

    Definition Classes
    SparseMatrixIMatriI
  41. def apply(i: Int): VectorI

    Get 'this' sparse matrix's vector at the 'i'-th index position ('i'-th row).

    Get 'this' sparse matrix's vector at the 'i'-th index position ('i'-th row).

    i

    the row index

    Definition Classes
    SparseMatrixIMatriI
  42. def apply(i: Int, j: Int): Int

    Get 'this' sparse matrix's element at the 'i,j'-th index position.

    Get 'this' sparse matrix's element at the 'i,j'-th index position.

    i

    the row index

    j

    the column index

    Definition Classes
    SparseMatrixIMatriI
  43. def apply(iv: VectoI): MatriI

    Get the rows indicated by the index vector 'iv' FIX - implement in all implementing classes

    Get the rows indicated by the index vector 'iv' FIX - implement in all implementing classes

    iv

    the vector of row indices

    Definition Classes
    MatriI
  44. def apply(i: Int, jr: Range): VectoI

    Get a slice 'this' matrix row-wise at index 'i' and column-wise on range 'jr'.

    Get a slice 'this' matrix row-wise at index 'i' and column-wise on range 'jr'. Ex: u = a(2, 3..5)

    i

    the row index

    jr

    the column range

    Definition Classes
    MatriI
  45. def apply(ir: Range, j: Int): VectoI

    Get a slice 'this' matrix row-wise on range 'ir' and column-wise at index j.

    Get a slice 'this' matrix row-wise on range 'ir' and column-wise at index j. Ex: u = a(2..4, 3)

    ir

    the row range

    j

    the column index

    Definition Classes
    MatriI
  46. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  47. def bsolve(y: VectoI): VectorI

    Solve for 'x' using back substitution in the equation 'u*x = y' where 'this' matrix ('u') is upper triangular (see 'lud_npp' above).

    Solve for 'x' using back substitution in the equation 'u*x = y' where 'this' matrix ('u') is upper triangular (see 'lud_npp' above).

    y

    the constant vector

    Definition Classes
    SparseMatrixIMatriI
  48. def clean(thres: Double, relative: Boolean = true): SparseMatrixI

    Clean values in matrix at or below the threshold by setting them to zero.

    Clean values in matrix at or below the threshold by setting them to zero. Iterative algorithms give approximate values and if very close to zero, may throw off other calculations, e.g., in computing eigenvectors.

    thres

    the cutoff threshold (a small value)

    relative

    whether to use relative or absolute cutoff

    Definition Classes
    SparseMatrixIMatriI
  49. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @HotSpotIntrinsicCandidate()
  50. def col(col: Int, from: Int = 0): VectorI

    Get column 'col' from the matrix, returning it as a vector.

    Get column 'col' from the matrix, returning it as a vector.

    col

    the column to extract from the matrix

    from

    the position to start extracting from

    Definition Classes
    SparseMatrixIMatriI
  51. def copy(): SparseMatrixI

    Create a clone of 'this' 'm-by-n' sparse matrix.

    Create a clone of 'this' 'm-by-n' sparse matrix.

    Definition Classes
    SparseMatrixIMatriI
  52. val d1: Int
  53. val d2: Int
  54. def det: Int

    Compute the determinant of 'this' sparse matrix.

    Compute the determinant of 'this' sparse matrix.

    Definition Classes
    SparseMatrixIMatriI
  55. def diag(p: Int, q: Int): SparseMatrixI

    Form a matrix '[Ip, this, Iq]' where 'Ir' is a 'r-by-r' identity matrix, by positioning the three matrices 'Ip', 'this' and 'Iq' along the diagonal.

    Form a matrix '[Ip, this, Iq]' where 'Ir' is a 'r-by-r' identity matrix, by positioning the three matrices 'Ip', 'this' and 'Iq' along the diagonal.

    p

    the size of identity matrix Ip

    q

    the size of identity matrix Iq

    Definition Classes
    SparseMatrixIMatriI
  56. def diag(b: MatriI): SparseMatrixI

    Combine 'this' sparse matrix with matrix 'b', placing them along the diagonal and filling in the bottom left and top right regions with zeros: '[this, b]'.

    Combine 'this' sparse matrix with matrix 'b', placing them along the diagonal and filling in the bottom left and top right regions with zeros: '[this, b]'.

    b

    the matrix to combine with this matrix

    Definition Classes
    SparseMatrixIMatriI
  57. lazy val dim1: Int

    Dimension 1

    Dimension 1

    Definition Classes
    SparseMatrixIMatriI
  58. lazy val dim2: Int

    Dimension 2

    Dimension 2

    Definition Classes
    SparseMatrixIMatriI
  59. def dot(b: MatriI): VectorI

    Compute the dot product of 'this' matrix with matrix 'b' to produce a vector.

    Compute the dot product of 'this' matrix with matrix 'b' to produce a vector.

    b

    the second matrix of the dot product

    Definition Classes
    SparseMatrixIMatriI
  60. def dot(u: VectoI): VectorI

    Compute the dot product of 'this' matrix and vector 'u', by first transposing 'this' matrix and then multiplying by 'u' (i.e., 'a dot u = a.t * u').

    Compute the dot product of 'this' matrix and vector 'u', by first transposing 'this' matrix and then multiplying by 'u' (i.e., 'a dot u = a.t * u').

    u

    the vector to multiply by (requires same first dimensions)

    Definition Classes
    SparseMatrixIMatriI
  61. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  62. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  63. val fString: String

    Format string used for printing vector values (change using 'setFormat')

    Format string used for printing vector values (change using 'setFormat')

    Attributes
    protected
    Definition Classes
    MatriI
  64. def flatten: VectoI

    Flatten 'this' matrix in row-major fashion, returning a vector containing all the elements from the matrix.

    Flatten 'this' matrix in row-major fashion, returning a vector containing all the elements from the matrix.

    Definition Classes
    MatriI
  65. final def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  66. def foreach[U](f: (Array[Int]) ⇒ U): Unit

    Iterate over 'this' matrix row by row applying method 'f'.

    Iterate over 'this' matrix row by row applying method 'f'.

    f

    the function to apply

    Definition Classes
    MatriI
  67. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  68. def getDiag(k: Int = 0): VectorI

    Get the 'k'th diagonal of this matrix.

    Get the 'k'th diagonal of this matrix. Assumes 'dim2 >= dim1'.

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    SparseMatrixIMatriI
  69. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  70. def inverse: SparseMatrixI

    Invert 'this' sparse matrix (requires a 'squareMatrix') using partial pivoting.

    Invert 'this' sparse matrix (requires a 'squareMatrix') using partial pivoting.

    Definition Classes
    SparseMatrixIMatriI
  71. def inverse_ip(): SparseMatrixI

    Invert in-place 'this' sparse matrix (requires a 'squareMatrix').

    Invert in-place 'this' sparse matrix (requires a 'squareMatrix'). This version uses partial pivoting.

    Definition Classes
    SparseMatrixIMatriI
  72. def inverse_npp: SparseMatrixI

    Invert 'this' sparse matrix (requires a 'squareMatrix') not using partial pivoting.

  73. def isBidiagonal: Boolean

    Check whether 'this' matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal).

    Check whether 'this' matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal). The method may be overriding for efficiency.

    Definition Classes
    MatriI
  74. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  75. def isNonnegative: Boolean

    Check whether 'this' sparse matrix is nonnegative (has no negative elements).

    Check whether 'this' sparse matrix is nonnegative (has no negative elements).

    Definition Classes
    SparseMatrixIMatriI
  76. def isRectangular: Boolean

    Check whether 'this' sparse matrix is rectangular (all rows have the same number of columns).

    Check whether 'this' sparse matrix is rectangular (all rows have the same number of columns).

    Definition Classes
    SparseMatrixIMatriI
  77. def isSquare: Boolean

    Check whether 'this' matrix is square (same row and column dimensions).

    Check whether 'this' matrix is square (same row and column dimensions).

    Definition Classes
    MatriI
  78. def isSymmetric: Boolean

    Check whether 'this' matrix is symmetric.

    Check whether 'this' matrix is symmetric.

    Definition Classes
    MatriI
  79. def isTridiagonal: Boolean

    Check whether 'this' matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal).

    Check whether 'this' matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal). The method may be overriding for efficiency.

    Definition Classes
    MatriI
  80. def leDimensions(b: MatriI): Boolean

    Check whether 'this' matrix dimensions are less than or equal to 'le' those of the other matrix 'b'.

    Check whether 'this' matrix dimensions are less than or equal to 'le' those of the other matrix 'b'.

    b

    the other matrix

    Definition Classes
    MatriI
  81. def lowerT: SparseMatrixI

    Return the lower triangular of 'this' matrix (rest are zero).

    Return the lower triangular of 'this' matrix (rest are zero).

    Definition Classes
    SparseMatrixIMatriI
  82. def lud_ip(): (SparseMatrixI, SparseMatrixI)

    Factor in-place 'this' sparse matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.

    Factor in-place 'this' sparse matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.

    Definition Classes
    SparseMatrixIMatriI
  83. def lud_npp: (SparseMatrixI, SparseMatrixI)

    Factor 'this' sparse matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.

    Factor 'this' sparse matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.

    Definition Classes
    SparseMatrixIMatriI
  84. def mag: Int

    Find the magnitude of 'this' matrix, the element value farthest from zero.

    Find the magnitude of 'this' matrix, the element value farthest from zero.

    Definition Classes
    MatriI
  85. def map(f: (VectoI) ⇒ VectoI): MatriI

    Map the elements of 'this' matrix by applying the mapping function 'f'.

    Map the elements of 'this' matrix by applying the mapping function 'f'. FIX - remove ??? and implement in all implementing classes

    f

    the function to apply

    Definition Classes
    MatriI
  86. def max(e: Int = dim1): Int

    Find the maximum element in 'this' sparse matrix.

    Find the maximum element in 'this' sparse matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    SparseMatrixIMatriI
  87. def mdot(b: MatriI): SparseMatrixI

    Compute the matrix dot product of 'this' matrix and matrix 'b', by first transposing 'this' matrix and then multiplying by 'b' (i.e., 'a dot b = a.t * b').

    Compute the matrix dot product of 'this' matrix and matrix 'b', by first transposing 'this' matrix and then multiplying by 'b' (i.e., 'a dot b = a.t * b').

    b

    the matrix to multiply by (requires same first dimensions)

    Definition Classes
    SparseMatrixIMatriI
  88. def mean: VectoI

    Compute the column means of 'this' matrix.

    Compute the column means of 'this' matrix.

    Definition Classes
    MatriI
  89. def meanNZ: VectoI

    Compute the column means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).

    Compute the column means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).

    Definition Classes
    MatriI
  90. def meanR: VectoI

    Compute the row means of 'this' matrix.

    Compute the row means of 'this' matrix.

    Definition Classes
    MatriI
  91. def meanRNZ: VectoI

    Compute the row means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).

    Compute the row means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).

    Definition Classes
    MatriI
  92. def min(e: Int = dim1): Int

    Find the minimum element in 'this' sparse matrix.

    Find the minimum element in 'this' sparse matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    SparseMatrixIMatriI
  93. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  94. def norm1: Int

    Compute the 1-norm of 'this' matrix, i.e., the maximum 1-norm of the column vectors.

    Compute the 1-norm of 'this' matrix, i.e., the maximum 1-norm of the column vectors. This is useful for comparing matrices '(a - b).norm1'.

    Definition Classes
    MatriI
    See also

    en.wikipedia.org/wiki/Matrix_norm

  95. def normF: Int

    Compute the Frobenius-norm of 'this' matrix, i.e., the square root of the sum of the squared values over all the elements (sqrt (sse)).

    Compute the Frobenius-norm of 'this' matrix, i.e., the square root of the sum of the squared values over all the elements (sqrt (sse)). FIX: for MatriC should take absolute values, first.

    Definition Classes
    MatriI
    See also

    en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

  96. def normFSq: Int

    Compute the sqaure of the Frobenius-norm of 'this' matrix, i.e., the sum of the squared values over all the elements (sse).

    Compute the sqaure of the Frobenius-norm of 'this' matrix, i.e., the sum of the squared values over all the elements (sse). FIX: for MatriC should take absolute values, first.

    Definition Classes
    MatriI
    See also

    en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

  97. def normINF: Int

    Compute the (infinity) INF-norm of 'this' matrix, i.e., the maximum 1-norm of the row vectors.

    Compute the (infinity) INF-norm of 'this' matrix, i.e., the maximum 1-norm of the row vectors.

    Definition Classes
    MatriI
    See also

    en.wikipedia.org/wiki/Matrix_norm

  98. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  99. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  100. def nullspace: VectorI

    Compute the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    nullspace (a) = set of orthogonal vectors v s.t. a * v = 0

    The left nullspace of matrix 'a' is the same as the right nullspace of 'a.t'. FIX: need a more robust algorithm for computing nullspace (@see Fac_QR.scala). FIX: remove the 'n = m+1' restriction.

    Definition Classes
    SparseMatrixIMatriI
    See also

    http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces

    /solving-ax-0-pivot-variables-special-solutions/MIT18_06SCF11_Ses1.7sum.pdf

  101. def nullspace_ip(): VectorI

    Compute in-place the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute in-place the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    nullspace (a) = set of orthogonal vectors v s.t. a * v = 0

    The left nullspace of matrix 'a' is the same as the right nullspace of 'a.t'. FIX: need a more robust algorithm for computing nullspace (@see Fac_QR.scala). FIX: remove the 'n = m+1' restriction.

    Definition Classes
    SparseMatrixIMatriI
    See also

    http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces

    /solving-ax-0-pivot-variables-special-solutions/MIT18_06SCF11_Ses1.7sum.pdf

  102. val range1: Range

    Range for the storage array on dimension 1 (rows)

    Range for the storage array on dimension 1 (rows)

    Definition Classes
    MatriI
  103. val range2: Range

    Range for the storage array on dimension 2 (columns)

    Range for the storage array on dimension 2 (columns)

    Definition Classes
    MatriI
  104. def reduce: SparseMatrixI

    Use Gauss-Jordan reduction on 'this' sparse matrix to make the left part embed an identity matrix.

    Use Gauss-Jordan reduction on 'this' sparse matrix to make the left part embed an identity matrix. A constraint on this m by n matrix is that n >= m. It can be used to solve 'a * x = b': augment 'a' with 'b' and call reduce. Takes '[a | b]' to '[I | x]'.

    Definition Classes
    SparseMatrixIMatriI
  105. def reduce_ip(): Unit

    Use Gauss-Jordan reduction in-place on 'this' sparse matrix to make the left part embed an identity matrix.

    Use Gauss-Jordan reduction in-place on 'this' sparse matrix to make the left part embed an identity matrix. A constraint on this m by n matrix is that n >= m. It can be used to solve 'a * x = b': augment 'a' with 'b' and call reduce. Takes '[a | b]' to '[I | x]'.

    Definition Classes
    SparseMatrixIMatriI
  106. def sameCrossDimensions(b: MatriI): Boolean

    Check whether 'this' matrix and the other matrix 'b' have the same cross dimensions.

    Check whether 'this' matrix and the other matrix 'b' have the same cross dimensions.

    b

    the other matrix

    Definition Classes
    MatriI
  107. def sameDimensions(b: MatriI): Boolean

    Check whether 'this' matrix and the other matrix 'b' have the same dimensions.

    Check whether 'this' matrix and the other matrix 'b' have the same dimensions.

    b

    the other matrix

    Definition Classes
    MatriI
  108. def selectCols(colIndex: Array[Int]): SparseMatrixI

    Select columns from this matrix according to the given index/basis.

    Select columns from this matrix according to the given index/basis. Ex: Can be used to divide a matrix into a basis and a non-basis.

    colIndex

    the column index positions (e.g., (0, 2, 5))

    Definition Classes
    SparseMatrixIMatriI
  109. def selectRows(rowIndex: Array[Int]): SparseMatrixI

    Select rows from this matrix according to the given index/basis.

    Select rows from this matrix according to the given index/basis.

    rowIndex

    the row index positions (e.g., (0, 2, 5))

    Definition Classes
    SparseMatrixIMatriI
  110. def selectRows(rowIndex: VectoI): MatriI

    Select rows from 'this' matrix according to the given index/basis 'rowIndex'.

    Select rows from 'this' matrix according to the given index/basis 'rowIndex'.

    rowIndex

    the row index positions (e.g., (0, 2, 5))

    Definition Classes
    MatriI
  111. def selectRowsEx(rowIndex: VectoI): MatriI

    Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.

    Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.

    rowIndex

    the row indices to exclude

    Definition Classes
    MatriI
  112. def selectRowsEx(rowIndex: Array[Int]): MatriI

    Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.

    Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.

    rowIndex

    the row indices to exclude

    Definition Classes
    MatriI
  113. def set(i: Int, u: VectoI, j: Int = 0): Unit

    Set this matrix's 'i'th row starting at column 'j' to the vector 'u'.

    Set this matrix's 'i'th row starting at column 'j' to the vector 'u'.

    i

    the row index

    u

    the vector value to assign

    j

    the starting column index

    Definition Classes
    SparseMatrixIMatriI
  114. def set(u: MatriI): Unit

    Set the values in 'this' matrix as copies of the values in matrix 'u'.

    Set the values in 'this' matrix as copies of the values in matrix 'u'.

    u

    the matrix of values to assign

    Definition Classes
    SparseMatrixIMatriI
  115. def set(u: Array[Array[Int]]): Unit

    Set all the values in this matrix as copies of the values in 2D array 'u'.

    Set all the values in this matrix as copies of the values in 2D array 'u'.

    u

    the 2D array of values to assign

    Definition Classes
    SparseMatrixIMatriI
  116. def set(x: Int): Unit

    Set all the elements in this matrix to the scalar 'x'.

    Set all the elements in this matrix to the scalar 'x'.

    x

    the scalar value to assign

    Definition Classes
    SparseMatrixIMatriI
  117. def setCol(col: Int, u: VectoI): Unit

    Set column 'col' of the matrix to a vector.

    Set column 'col' of the matrix to a vector.

    col

    the column to set

    u

    the vector to assign to the column

    Definition Classes
    SparseMatrixIMatriI
  118. def setDiag(x: Int): Unit

    Set the main diagonal of this matrix to the scalar 'x'.

    Set the main diagonal of this matrix to the scalar 'x'. Assumes 'dim2 >= dim1'.

    x

    the scalar to set the diagonal to

    Definition Classes
    SparseMatrixIMatriI
  119. def setDiag(u: VectoI, k: Int = 0): Unit

    Set the 'k'th diagonal of this matrix to the vector 'u'.

    Set the 'k'th diagonal of this matrix to the vector 'u'. Assumes 'dim2 >= dim1'.

    u

    the vector to set the diagonal to

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    SparseMatrixIMatriI
  120. def setFormat(newFormat: String): Unit

    Set the format to the 'newFormat'.

    Set the format to the 'newFormat'.

    newFormat

    the new format string

    Definition Classes
    MatriI
  121. def showAll(): Unit

    Show all elements in 'this' sparse matrix.

  122. def slice(r_from: Int, r_end: Int, c_from: Int, c_end: Int): SparseMatrixI

    Slice 'this' sparse matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'.

    Slice 'this' sparse matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'.

    r_from

    the start of the row slice

    r_end

    the end of the row slice

    c_from

    the start of the column slice

    c_end

    the end of the column slice

    Definition Classes
    SparseMatrixIMatriI
  123. def slice(from: Int, end: Int): SparseMatrixI

    Slice 'this' sparse matrix row-wise 'from' to 'end'.

    Slice 'this' sparse matrix row-wise 'from' to 'end'.

    from

    the start row of the slice

    end

    the end row of the slice

    Definition Classes
    SparseMatrixIMatriI
  124. def slice(rg: Range): MatriI

    Slice 'this' matrix row-wise over the given range 'rg'.

    Slice 'this' matrix row-wise over the given range 'rg'.

    rg

    the range specifying the slice

    Definition Classes
    MatriI
  125. def sliceCol(from: Int, end: Int): SparseMatrixI

    Slice 'this' sparse matrix column-wise 'from' to 'end'.

    Slice 'this' sparse matrix column-wise 'from' to 'end'.

    from

    the start column of the slice (inclusive)

    end

    the end column of the slice (exclusive)

    Definition Classes
    SparseMatrixIMatriI
  126. def sliceEx(row: Int, col: Int): SparseMatrixI

    Slice 'this' sparse matrix excluding the given row and column.

    Slice 'this' sparse matrix excluding the given row and column.

    row

    the row to exclude

    col

    the column to exclude

    Definition Classes
    SparseMatrixIMatriI
  127. def sliceEx(rg: Range): MatriI

    Slice 'this' matrix row-wise excluding the given range 'rg'.

    Slice 'this' matrix row-wise excluding the given range 'rg'.

    rg

    the excluded range of the slice

    Definition Classes
    MatriI
  128. def solve(b: VectoI): VectoI

    Solve for 'x' in the equation 'a*x = b' where 'a' is 'this' matrix.

    Solve for 'x' in the equation 'a*x = b' where 'a' is 'this' matrix.

    b

    the constant vector.

    Definition Classes
    SparseMatrixIMatriI
  129. def solve(l: MatriI, u: MatriI, b: VectoI): VectoI

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud_npp' above).

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud_npp' above).

    l

    the lower triangular matrix

    u

    the upper triangular matrix

    b

    the constant vector

    Definition Classes
    SparseMatrixIMatriI
  130. def solve(lu: (MatriI, MatriI), b: VectoI): VectoI

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).

    lu

    the lower and upper triangular matrices

    b

    the constant vector

    Definition Classes
    MatriI
  131. def splitRows(rowIndex: VectoI): (MatriI, MatriI)

    Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.

    Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.

    rowIndex

    the row indices to include/exclude

    Definition Classes
    MatriI
  132. def splitRows(rowIndex: Array[Int]): (MatriI, MatriI)

    Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.

    Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.

    rowIndex

    the row indices to include/exclude

    Definition Classes
    MatriI
  133. def sum: Int

    Compute the sum of 'this' sparse matrix, i.e., the sum of its elements.

    Compute the sum of 'this' sparse matrix, i.e., the sum of its elements.

    Definition Classes
    SparseMatrixIMatriI
  134. def sumAbs: Int

    Compute the 'abs' sum of this matrix, i.e., the sum of the absolute value of its elements.

    Compute the 'abs' sum of this matrix, i.e., the sum of the absolute value of its elements. This is useful for comparing matrices '(a - b).sumAbs'.

    Definition Classes
    SparseMatrixIMatriI
  135. def sumLower: Int

    Compute the sum of the lower triangular region of 'this' sparse matrix.

    Compute the sum of the lower triangular region of 'this' sparse matrix.

    Definition Classes
    SparseMatrixIMatriI
  136. def swap(i: Int, k: Int, col: Int = 0): Unit

    Swap the elements in rows 'i' and 'k' starting from column 'col'.

    Swap the elements in rows 'i' and 'k' starting from column 'col'.

    i

    the first row in the swap

    k

    the second row in the swap

    col

    the starting column for the swap (default 0 => whole row)

    Definition Classes
    MatriI
  137. def swapCol(j: Int, l: Int, row: Int = 0): Unit

    Swap the elements in columns 'j' and 'l' starting from row 'row'.

    Swap the elements in columns 'j' and 'l' starting from row 'row'.

    j

    the first column in the swap

    l

    the second column in the swap

    row

    the starting row for the swap (default 0 => whole column)

    Definition Classes
    MatriI
  138. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  139. def t: SparseMatrixI

    Transpose 'this' sparse matrix (rows => columns).

    Transpose 'this' sparse matrix (rows => columns).

    Definition Classes
    SparseMatrixIMatriI
  140. def times_s(b: SparseMatrixI): SparseMatrixI

    Multiply 'this' sparse matrix by sparse matrix 'b' using the Strassen matrix multiplication algorithm.

    Multiply 'this' sparse matrix by sparse matrix 'b' using the Strassen matrix multiplication algorithm. Both matrices ('this' and 'b') must be square. Although the algorithm is faster than the traditional cubic algorithm, its requires more memory and is often less stable (due to round-off errors). FIX: could be make more efficient using a virtual slice 'vslice' method.

    b

    the matrix to multiply by (it has to be a square matrix)

    See also

    http://en.wikipedia.org/wiki/Strassen_algorithm

  141. def toDense: MatrixI

    Convert this sparse matrix to a dense matrix.

    Convert this sparse matrix to a dense matrix. FIX - new builder

    Definition Classes
    SparseMatrixIMatriI
  142. def toDouble: MatrixD

    Convert 'this' SparseMatrixI into a dense double matrix MatrixD.

    Convert 'this' SparseMatrixI into a dense double matrix MatrixD.

    Definition Classes
    SparseMatrixIMatriI
  143. def toInt: MatrixI

    Convert 'this' SparseMatrixI into a dense integer matrix MatrixI.

    Convert 'this' SparseMatrixI into a dense integer matrix MatrixI.

    Definition Classes
    SparseMatrixIMatriI
  144. def toString(): String

    Show the non-zero elements in 'this' sparse matrix.

    Show the non-zero elements in 'this' sparse matrix.

    Definition Classes
    SparseMatrixI → AnyRef → Any
  145. def trace: Int

    Compute the trace of 'this' sparse matrix, i.e., the sum of the elements on the main diagonal.

    Compute the trace of 'this' sparse matrix, i.e., the sum of the elements on the main diagonal. Should also equal the sum of the eigenvalues.

    Definition Classes
    SparseMatrixIMatriI
    See also

    Eigen.scala

  146. def update(ir: Range, jr: Range, b: MatriI): Unit

    Set a slice 'this' sparse matrix row-wise on range 'ir' and column-wise on range 'jr'.

    Set a slice 'this' sparse matrix row-wise on range 'ir' and column-wise on range 'jr'. Ex: a(2..4, 3..5) = b

    ir

    the row range

    jr

    the column range

    b

    the matrix to assign

    Definition Classes
    SparseMatrixIMatriI
  147. def update(i: Int, u: RowMap): Unit

    Set 'this' sparse matrix's row at the 'i'-th index position to the sorted-linked-map 'u'.

    Set 'this' sparse matrix's row at the 'i'-th index position to the sorted-linked-map 'u'.

    i

    the row index

    u

    the sorted-linked-map of non-zero values to assign

  148. def update(i: Int, u: VectoI): Unit

    Set 'this' sparse matrix's row at the i-th index position to the vector 'u'.

    Set 'this' sparse matrix's row at the i-th index position to the vector 'u'.

    i

    the row index

    u

    the vector value to assign

    Definition Classes
    SparseMatrixIMatriI
  149. def update(i: Int, j: Int, x: Int): Unit

    Set 'this' sparse matrix's element at the 'i,j'-th index position to the scalar 'x'.

    Set 'this' sparse matrix's element at the 'i,j'-th index position to the scalar 'x'. Only store 'x' if it is non-zero.

    i

    the row index

    j

    the column index

    x

    the scalar value to assign

    Definition Classes
    SparseMatrixIMatriI
  150. def update(i: Int, jr: Range, u: VectoI): Unit

    Set a slice of 'this' matrix row-wise at index 'i' and column-wise on range 'jr' to vector 'u'.

    Set a slice of 'this' matrix row-wise at index 'i' and column-wise on range 'jr' to vector 'u'. Ex: a(2, 3..5) = u

    i

    the row index

    jr

    the column range

    u

    the vector to assign

    Definition Classes
    MatriI
  151. def update(ir: Range, j: Int, u: VectoI): Unit

    Set a slice of 'this' matrix row-wise on range 'ir' and column-wise at index 'j' to vector 'u'.

    Set a slice of 'this' matrix row-wise on range 'ir' and column-wise at index 'j' to vector 'u'. Ex: a(2..4, 3) = u

    ir

    the row range

    j

    the column index

    u

    the vector to assign

    Definition Classes
    MatriI
  152. def upperT: SparseMatrixI

    Return the upper triangular of 'this' matrix (rest are zero).

    Return the upper triangular of 'this' matrix (rest are zero).

    Definition Classes
    SparseMatrixIMatriI
  153. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  154. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  155. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  156. def write(fileName: String): Unit

    Write 'this' matrix to a CSV-formatted text file with name 'fileName'.

    Write 'this' matrix to a CSV-formatted text file with name 'fileName'.

    fileName

    the name of file to hold the data

    Definition Classes
    SparseMatrixIMatriI
  157. def zero(m: Int = dim1, n: Int = dim2): SparseMatrixI

    Create an 'm-by-n' sparse matrix with all elements initialized to zero.

    Create an 'm-by-n' sparse matrix with all elements initialized to zero.

    m

    the number of rows

    n

    the number of columns

    Definition Classes
    SparseMatrixIMatriI
  158. def ~^(p: Int): SparseMatrixI

    Raise 'this' sparse matrix to the 'p'th power (for some integer 'p' >= 2).

    Raise 'this' sparse matrix to the 'p'th power (for some integer 'p' >= 2). Caveat: should be replace by a divide and conquer algorithm.

    p

    the power to raise this matrix to

    Definition Classes
    SparseMatrixIMatriI

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Serializable

Inherited from Serializable

Inherited from MatriI

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped