class PrincipalComponents_F extends Reducer
The PrincipalComponents_F
class performs the Principal Component Analysis 'PCA'
on data matrix 'x'. It can be used to reduce the dimensionality of the data.
First find the Principal Components 'PC's by calling 'findPCs' and then call
'reduce' to reduce the data (i.e., reduce matrix 'x' to a lower dimensionality
matrix).
- Alphabetic
- By Inheritance
- PrincipalComponents_F
- Reducer
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new PrincipalComponents_F(xa: Functions, t: VectorD)
- xa
the array of functions
- t
the vector of time points
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def factorReduce(): (MatriD, MatriD)
Reduce the original data matrix by factoring it into two lower dimensionality matrices that maintains most of the descriptive power of the original matrix.
Reduce the original data matrix by factoring it into two lower dimensionality matrices that maintains most of the descriptive power of the original matrix. Override to algorithms that use factoring.
- Definition Classes
- Reducer
- See also
NMFactortorization
- def findPCs(k: Int): MatriD
Find the Principal Components/Features, the eigenvectors with the 'k' highest eigenvalues.
Find the Principal Components/Features, the eigenvectors with the 'k' highest eigenvalues.
- k
the number of Principal Components 'PC's to find
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- val pca: PrincipalComponents
- def recover(): MatriD
Approximately recover the original data by multiplying the reduced matrix by the inverse (via transpose) of the feature matrix and then adding back the means.
Approximately recover the original data by multiplying the reduced matrix by the inverse (via transpose) of the feature matrix and then adding back the means.
- Definition Classes
- PrincipalComponents_F → Reducer
- def reduce(): MatriD
Multiply the zero mean data matrix by the feature matrix to reduce dimensionality.
Multiply the zero mean data matrix by the feature matrix to reduce dimensionality.
- Definition Classes
- PrincipalComponents_F → Reducer
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- val x: MatrixD
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated