Packages

object RecommenderTest extends App with Recommender

The RecommenderTest is used to test the Recommender trait. > runMain scalation.analytics.recommender.RecommenderTest

Linear Supertypes
Recommender, App, DelayedInit, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RecommenderTest
  2. Recommender
  3. App
  4. DelayedInit
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def args: Array[String]
    Attributes
    protected
    Definition Classes
    App
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
  7. def crossValidate(tester: MatrixD): Unit

    Phase 2: Cross validate the final predictions against the test dataset.

    Phase 2: Cross validate the final predictions against the test dataset.

    tester

    testing data matrix

    Definition Classes
    Recommender
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  10. def error_metrics(input: MatrixI): Unit

    Phase 1: Print MAE and RMSE metrics based on the final predictions for the test dataset.

    Phase 1: Print MAE and RMSE metrics based on the final predictions for the test dataset.

    input

    the test portion of the original 4-column input matrix

    Definition Classes
    Recommender
  11. final val executionStart: Long
    Definition Classes
    App
  12. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  13. def getStats: Array[Statistic]

    Return the variables for the statistics vectors.

    Return the variables for the statistics vectors.

    Definition Classes
    Recommender
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. final def main(args: Array[String]): Unit
    Definition Classes
    App
  17. def makeRatings(input: MatrixI, m: Int, n: Int): MatrixD

    Convert an original 4-column 'input' integer matrix (i, j, value, timestamp) into a two-dimensional 'ratings' double matrix with 'm' rows and 'n' columns.

    Convert an original 4-column 'input' integer matrix (i, j, value, timestamp) into a two-dimensional 'ratings' double matrix with 'm' rows and 'n' columns. The 'input' matrix has type MatrixI, while the 'ratings' matrix has type MatrixD.

    input

    the original 4-column input data matrix containing ratings, e.g., from a file

    m

    the number of rows for the ratings matrix

    n

    the number of columns for the ratings matrix

    Definition Classes
    Recommender
  18. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  19. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  20. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  21. def rate(i: Int, j: Int): Double

    Return the final rating for a given '(i, j)' cell, e.g., (user, item).

    Return the final rating for a given '(i, j)' cell, e.g., (user, item).

    i

    the ith row, e.g., user

    j

    the jth column, e.g., item

    Definition Classes
    RecommenderTestRecommender
  22. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  23. def test(istart: Int, iend: Int, input: MatrixI): Unit

    Phase 3: Test the accuracy of the predictions and add it to the statistics vector.

    Phase 3: Test the accuracy of the predictions and add it to the statistics vector.

    istart

    the start point

    iend

    the end point

    input

    the original 4-column input matrix

    Definition Classes
    Recommender
  24. def toString(): String
    Definition Classes
    AnyRef → Any
  25. def topk(x: VectorD, k: Int): VectorI

    Return the indices of the 'k' largest values in vector 'x'.

    Return the indices of the 'k' largest values in vector 'x'. FIX - replace with more efficient top-k algorithm

    x

    the input vector

    k

    the number of values to be returned

    Definition Classes
    Recommender
  26. def topk2(x: VectorD, k: Int): Array[Int]

    Return the indices of the 'k' largest values in vector 'x'.

    Return the indices of the 'k' largest values in vector 'x'.

    x

    the input vector

    k

    the number of values to be returned

    Definition Classes
    Recommender
  27. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  28. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  29. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  30. val x: VectorD

Deprecated Value Members

  1. def delayedInit(body: => Unit): Unit
    Definition Classes
    App → DelayedInit
    Annotations
    @deprecated
    Deprecated

    (Since version 2.11.0) the delayedInit mechanism will disappear

  2. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

Inherited from Recommender

Inherited from App

Inherited from DelayedInit

Inherited from AnyRef

Inherited from Any

Ungrouped