object RecommenderTest extends App with Recommender
The RecommenderTest
is used to test the Recommender
trait.
> runMain scalation.analytics.recommender.RecommenderTest
- Alphabetic
- By Inheritance
- RecommenderTest
- Recommender
- App
- DelayedInit
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def args: Array[String]
- Attributes
- protected
- Definition Classes
- App
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def crossValidate(tester: MatrixD): Unit
Phase 2: Cross validate the final predictions against the test dataset.
Phase 2: Cross validate the final predictions against the test dataset.
- tester
testing data matrix
- Definition Classes
- Recommender
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def error_metrics(input: MatrixI): Unit
Phase 1: Print MAE and RMSE metrics based on the final predictions for the test dataset.
Phase 1: Print MAE and RMSE metrics based on the final predictions for the test dataset.
- input
the test portion of the original 4-column input matrix
- Definition Classes
- Recommender
- final val executionStart: Long
- Definition Classes
- App
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def getStats: Array[Statistic]
Return the variables for the statistics vectors.
Return the variables for the statistics vectors.
- Definition Classes
- Recommender
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def main(args: Array[String]): Unit
- Definition Classes
- App
- def makeRatings(input: MatrixI, m: Int, n: Int): MatrixD
Convert an original 4-column 'input' integer matrix (i, j, value, timestamp) into a two-dimensional 'ratings' double matrix with 'm' rows and 'n' columns.
Convert an original 4-column 'input' integer matrix (i, j, value, timestamp) into a two-dimensional 'ratings' double matrix with 'm' rows and 'n' columns. The 'input' matrix has type
MatrixI
, while the 'ratings' matrix has typeMatrixD
.- input
the original 4-column input data matrix containing ratings, e.g., from a file
- m
the number of rows for the ratings matrix
- n
the number of columns for the ratings matrix
- Definition Classes
- Recommender
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def rate(i: Int, j: Int): Double
Return the final rating for a given '(i, j)' cell, e.g., (user, item).
Return the final rating for a given '(i, j)' cell, e.g., (user, item).
- i
the ith row, e.g., user
- j
the jth column, e.g., item
- Definition Classes
- RecommenderTest → Recommender
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def test(istart: Int, iend: Int, input: MatrixI): Unit
Phase 3: Test the accuracy of the predictions and add it to the statistics vector.
Phase 3: Test the accuracy of the predictions and add it to the statistics vector.
- istart
the start point
- iend
the end point
- input
the original 4-column input matrix
- Definition Classes
- Recommender
- def toString(): String
- Definition Classes
- AnyRef → Any
- def topk(x: VectorD, k: Int): VectorI
Return the indices of the 'k' largest values in vector 'x'.
Return the indices of the 'k' largest values in vector 'x'. FIX - replace with more efficient top-k algorithm
- x
the input vector
- k
the number of values to be returned
- Definition Classes
- Recommender
- def topk2(x: VectorD, k: Int): Array[Int]
Return the indices of the 'k' largest values in vector 'x'.
Return the indices of the 'k' largest values in vector 'x'.
- x
the input vector
- k
the number of values to be returned
- Definition Classes
- Recommender
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- val x: VectorD
Deprecated Value Members
- def delayedInit(body: => Unit): Unit
- Definition Classes
- App → DelayedInit
- Annotations
- @deprecated
- Deprecated
(Since version 2.11.0) the delayedInit mechanism will disappear
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated