object MethodOfMoments
The MethodOfMoments
object provides methods for estimating parameters
for popular probability distributions using the Method of Moments (MOM).
The main alternative is to use Maximum Likelihood Estimators (MLE).
- See also
www.math.uah.edu/stat/point/Moments.html
- Alphabetic
- By Inheritance
- MethodOfMoments
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- type ParamFunction = (VectorD) => Array[Double]
Standard functional form for parameter estimating functions
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def bernoulli(x: VectorD): Array[Double]
Estimate the parameter 'p' for the
Bernoulli
distribution.Estimate the parameter 'p' for the
Bernoulli
distribution.- x
the statistical data vector
- def beta(x: VectorD): Array[Double]
Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Beta
distribution.Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Beta
distribution.- x
the statistical data vector
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exponential(x: VectorD): Array[Double]
Estimate the parameter 'mu' for the
Exponential
distribution.Estimate the parameter 'mu' for the
Exponential
distribution.- x
the statistical data vector
- def gamma(x: VectorD): Array[Double]
Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Gamma
distribution.Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Gamma
distribution.- x
the statistical data vector
- def geometric(x: VectorD): Array[Double]
Estimate the parameter 'p' for the
Geometric
distribution.Estimate the parameter 'p' for the
Geometric
distribution.- x
the statistical data vector
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def normal(x: VectorD): Array[Double]
Estimate the parameters 'mu' and 'sigma2' for the
Normal
distribution.Estimate the parameters 'mu' and 'sigma2' for the
Normal
distribution.- x
the statistical data vector
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def pareto(x: VectorD): Array[Double]
Estimate the parameters 'a' and 'b' for the
Pareto
distribution.Estimate the parameters 'a' and 'b' for the
Pareto
distribution.- x
the statistical data vector
- def poisson(x: VectorD): Array[Double]
Estimate the parameter 'mu' for the
Poisson
distribution.Estimate the parameter 'mu' for the
Poisson
distribution.- x
the statistical data vector
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def uniform(x: VectorD): Array[Double]
Estimate the parameters 'a' and 'b' for the
Uniform
distribution.Estimate the parameters 'a' and 'b' for the
Uniform
distribution.- x
the statistical data vector
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated