Packages

trait Classifier extends AnyRef

The Classifier trait provides a common framework for several classifiers. A classifier is for bounded responses. When the number of distinct responses cannot be bounded by some integer 'k', a predictor should be used.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Classifier
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def classify(z: VectoD): (Int, String, Double)

    Given a new continuous data vector z, determine which class it belongs to, returning the best class, its name and its relative probability.

    Given a new continuous data vector z, determine which class it belongs to, returning the best class, its name and its relative probability.

    z

    the vector to classify

  2. abstract def classify(z: VectoI): (Int, String, Double)

    Given a new discrete data vector z, determine which class it belongs to, returning the best class, its name and its relative probability.

    Given a new discrete data vector z, determine which class it belongs to, returning the best class, its name and its relative probability.

    z

    the vector to classify

  3. abstract def reset(): Unit

    Reset the frequency and probability tables.

  4. abstract def size: Int

    Return the size of the feature set.

  5. abstract def test(testStart: Int, testEnd: Int): Double

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    testStart

    the beginning of test region (inclusive).

    testEnd

    the end of test region (exclusive).

  6. abstract def train(testStart: Int, testEnd: Int): Unit

    Given a set of data vectors and their classifications, build a classifier.

    Given a set of data vectors and their classifications, build a classifier.

    testStart

    the beginning of test region (inclusive).

    testEnd

    the end of test region (exclusive).

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def crossValidate(nx: Int = 10): Double

    Test the accuracy of the classified results by cross-validation, returning the accuracy.

    Test the accuracy of the classified results by cross-validation, returning the accuracy. The "test data" starts at 'testStart' and ends at 'testEnd', the rest of the data is "training data'.

    nx

    the number of crosses and cross-validations (defaults to 5x).

  7. def crossValidateRand(nx: Int = 10): Double

    Test the accuracy of the classified results by cross-validation, returning the accuracy.

    Test the accuracy of the classified results by cross-validation, returning the accuracy. This version of cross-validation relies on "subtracting" frequencies from the previously stored global data to achieve efficiency.

    nx

    number of crosses and cross-validations (defaults to 10x).

  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  15. final def notify(): Unit
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  18. def test(itest: VectorI): Double

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    itest

    the indices of the instances considered test data

  19. def toString(): String
    Definition Classes
    AnyRef → Any
  20. def train(): Unit

    Given a set of data vectors and their classifications, build a classifier.

  21. def train(itest: IndexedSeq[Int]): Unit

    Given a set of data vectors and their classifications, build a classifier.

    Given a set of data vectors and their classifications, build a classifier.

    itest

    the indices of the instances considered as testing data

  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped