class LDA extends ClassifierReal
The LDA
class implements a Linear Discriminant Analysis 'LDA' classifier.
- See also
en.wikipedia.org/wiki/Linear_discriminant_analysis
- Alphabetic
- By Inheritance
- LDA
- ClassifierReal
- Error
- Classifier
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
LDA(x: MatrixD, y: VectoI, fn: Array[String])
- x
the real-valued training/test data vectors stored as rows of a matrix
- y
the training/test classification vector, where y_i = class for row i of the matrix x
- fn
the names for all features/variables
Value Members
-
def
calcCorrelation: MatriD
Calculate the correlation matrix for the feature vectors 'fea'.
Calculate the correlation matrix for the feature vectors 'fea'. If the correlations are too high, the independence assumption may be dubious.
- Definition Classes
- ClassifierReal
-
def
classify(z: VectoD): (Int, String, Double)
- z
the vector to classify
- Definition Classes
- LDA → Classifier
-
def
classify(z: VectoI): (Int, String, Double)
Given a new discrete (integer-valued) data vector 'z', determine which class it belongs to, by first converting it to a vector of doubles.
Given a new discrete (integer-valued) data vector 'z', determine which class it belongs to, by first converting it to a vector of doubles. Return the best class, its name and its relative probability
- z
the vector to classify
- Definition Classes
- ClassifierReal → Classifier
-
def
crossValidate(nx: Int = 10): Double
Test the accuracy of the classified results by cross-validation, returning the accuracy.
Test the accuracy of the classified results by cross-validation, returning the accuracy. The "test data" starts at 'testStart' and ends at 'testEnd', the rest of the data is "training data'.
- nx
the number of crosses and cross-validations (defaults to 5x).
- Definition Classes
- Classifier
-
def
crossValidateRand(nx: Int = 10): Double
Test the accuracy of the classified results by cross-validation, returning the accuracy.
Test the accuracy of the classified results by cross-validation, returning the accuracy. This version of cross-validation relies on "subtracting" frequencies from the previously stored global data to achieve efficiency.
- nx
number of crosses and cross-validations (defaults to 10x).
- Definition Classes
- Classifier
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
reset(): Unit
- Definition Classes
- LDA → Classifier
- def setCutoff(thres: Double): Unit
-
def
size: Int
Return the number of data vectors in training/test-set (# rows).
Return the number of data vectors in training/test-set (# rows).
- Definition Classes
- ClassifierReal → Classifier
-
def
test(xx: MatrixD, yy: VectorI): Double
Test the quality of the training with a test-set and return the fraction of correct classifications.
Test the quality of the training with a test-set and return the fraction of correct classifications.
- xx
the real-valued test vectors stored as rows of a matrix
- yy
the test classification vector, where 'yy_i = class for row i of xx'
- Definition Classes
- ClassifierReal
-
def
test(testStart: Int, testEnd: Int): Double
Test the quality of the training with a test-set and return the fraction of correct classifications.
Test the quality of the training with a test-set and return the fraction of correct classifications.
- testStart
beginning of test region (inclusive)
- testEnd
end of test region (exclusive)
- Definition Classes
- ClassifierReal → Classifier
-
def
test(itest: VectorI): Double
Test the quality of the training with a test-set and return the fraction of correct classifications.
Test the quality of the training with a test-set and return the fraction of correct classifications.
- itest
the indices of the instances considered test data
- Definition Classes
- Classifier
-
def
train(testStart: Int, testEnd: Int): Unit
- testStart
the beginning of test region (inclusive).
- testEnd
the end of test region (exclusive).
- Definition Classes
- LDA → Classifier
-
def
train(): Unit
Given a set of data vectors and their classifications, build a classifier.
Given a set of data vectors and their classifications, build a classifier.
- Definition Classes
- Classifier
-
def
train(itest: IndexedSeq[Int]): Unit
Given a set of data vectors and their classifications, build a classifier.
Given a set of data vectors and their classifications, build a classifier.
- itest
the indices of the instances considered as testing data
- Definition Classes
- Classifier