package par
The par package contains classes, traits and objects for analytics including classification, clustering and prediction with parallel implementations.
- Alphabetic
- By Inheritance
- par
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
abstract
class
BayesClassifier extends ClassifierInt with BayesMetrics
The
BayesClassifier
object provides factory methods for building Bayesian classifiers.The
BayesClassifier
object provides factory methods for building Bayesian classifiers. The following types of classifiers are currently supported:NaiveBayes
- Naive Bayes classifierSelNaiveBayes
- Selective Naive Bayes classifierTANBayes
- Tree Augmented Naive Bayes classifierSelTAN
- Selective Tree Augmented Naive Bayes classifierTwoBAN_OS
- Ordering-based Bayesian Network with k = 2 -
class
NaiveBayes extends NaiveBayes0
The same classifier but uses an optimized cross-validation technique.
The same classifier but uses an optimized cross-validation technique. -----------------------------------------------------------------------------
-
class
NaiveBayes0 extends BayesClassifier
The
NaiveBayes
class implements an Integer-Based Naive Bayes Classifier, which is a commonly used such classifier for discrete input data.The
NaiveBayes
class implements an Integer-Based Naive Bayes Classifier, which is a commonly used such classifier for discrete input data. The classifier is trained using a data matrix 'x' and a classification vector 'y'. Each data vector in the matrix is classified into one of 'k' classes numbered 0, ..., k-1. Prior probabilities are calculated based on the population of each class in the training-set. Relative posterior probabilities are computed by multiplying these by values computed using conditional probabilities. The classifier is naive, because it assumes feature independence and therefore simply multiplies the conditional probabilities.This classifier uses the standard cross-validation technique. -----------------------------------------------------------------------------
-
class
TANBayes extends TANBayes0
The same classifier but uses an optimized cross-validation technique.
The same classifier but uses an optimized cross-validation technique. -----------------------------------------------------------------------------
-
class
TANBayes0 extends BayesClassifier
The
TANBayes0
class implements an Integer-Based Tree Augmented Naive Bayes Classifier, which is a commonly used such classifier for discrete input data.The
TANBayes0
class implements an Integer-Based Tree Augmented Naive Bayes Classifier, which is a commonly used such classifier for discrete input data. The classifier is trained using a data matrix 'x' and a classification vector 'y'. Each data vector in the matrix is classified into one of 'k' classes numbered 0, ..., k-1. Prior probabilities are calculated based on the population of each class in the training-set. Relative posterior probabilities are computed by multiplying these by values computed using conditional probabilities. The classifier supports limited dependency between features/variables.This classifier uses the standard cross-validation technique. -----------------------------------------------------------------------------
-
class
TwoBAN_OS extends TwoBAN_OS0
The
TwoBAN_OS
class implements an Integer-Based Bayesian Network Classifier, which is a commonly used such classifier for discrete input data.The
TwoBAN_OS
class implements an Integer-Based Bayesian Network Classifier, which is a commonly used such classifier for discrete input data. Each node is limited to have at most 2 parents, and hence the "2" in the class nameTwoBAN_OS
. The classifier is trained using a data matrix 'x' and a classification vector 'y'. Each data vector in the matrix is classified into one of 'k' classes numbered 0, ..., k-1. Prior probabilities are calculated based on the population of each class in the training-set. Relative posterior probabilities are computed by multiplying these by values computed using conditional probabilities. The classifier supports limited dependency between features/variables.This classifier uses the standard cross-validation technique. ------------------------------------------------------------------------------
-
class
TwoBAN_OS0 extends BayesClassifier
The
TwoBAN_OS0
class implements an Integer-Based Bayesian Network Classifier, which is a commonly used such classifier for discrete input data.The
TwoBAN_OS0
class implements an Integer-Based Bayesian Network Classifier, which is a commonly used such classifier for discrete input data. Each node is limited to have at most 2 parents, and hence the "2" in the class nameTwoBAN_OS
. The classifier is trained using a data matrix 'x' and a classification vector 'y'. Each data vector in the matrix is classified into one of 'k' classes numbered 0, ..., k-1. Prior probabilities are calculated based on the population of each class in the training-set. Relative posterior probabilities are computed by multiplying these by values computed using conditional probabilities. The classifier supports limited dependency between features/variables.This classifier uses the standard cross-validation technique. ------------------------------------------------------------------------------
Value Members
-
val
BASE_DIR: String
The relative path for base directory
-
object
BayesClassifier
The
BayesClassifier
object provides factory methods for building Bayes classifiers. -
object
BayesClassifierTest extends App
The
BayesClassifierTest
object is used to test theBayesClassifier
class.The
BayesClassifierTest
object is used to test theBayesClassifier
class. Classify whether a car is more likely to be stolen (1) or not (1).- See also
www.inf.u-szeged.hu/~ormandi/ai2/06-naiveBayes-example.pdf > runMain scalation.analytics.classifier.par.BayesClassifierTest
-
object
BayesClassifierTest10 extends App
The
BayesClassifierTest10
object is used to test theBayesClassifier
class.The
BayesClassifierTest10
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest10 -
object
BayesClassifierTest11 extends App
The
BayesClassifierTest11
object is used to test theBayesClassifier
class.The
BayesClassifierTest11
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest11 -
object
BayesClassifierTest2 extends App
The
BayesClassifierTest2
object is used to test theBayesClassifier
class.The
BayesClassifierTest2
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest2 -
object
BayesClassifierTest3 extends App
The
BayesClassifierTest3
object is used to test theBayesClassifier
class.The
BayesClassifierTest3
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest3 -
object
BayesClassifierTest4 extends App
The
BayesClassifierTest4
object is used to test theBayesClassifier
class.The
BayesClassifierTest4
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest4 -
object
BayesClassifierTest5 extends App
The
BayesClassifierTest5
object is used to test theBayesClassifier
class.The
BayesClassifierTest5
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest5 -
object
BayesClassifierTest6 extends App
The
BayesClassifierTest6
object is used to test theBayesClassifier
class.The
BayesClassifierTest6
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest6 -
object
BayesClassifierTest7 extends App
The
BayesClassifierTest7
object is used to test theBayesClassifier
class.The
BayesClassifierTest7
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest7 -
object
BayesClassifierTest8 extends App
The
BayesClassifierTest8
object is used to test theBayesClassifier
class.The
BayesClassifierTest8
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest8 -
object
BayesClassifierTest9 extends App
The
BayesClassifierTest9
object is used to test theBayesClassifier
class.The
BayesClassifierTest9
object is used to test theBayesClassifier
class. > runMain scalation.analytics.classifier.par.BayesClassifierTest9 -
object
NaiveBayes
NaiveBayes
is the companion object for theNaiveBayes
class. -
object
NaiveBayes0
NaiveBayes0
is the companion object for theNaiveBayes0
class. -
object
NaiveBayesTest extends App
The
NaiveBayesTest
object is used to test theNaiveBayes
class.The
NaiveBayesTest
object is used to test theNaiveBayes
class. Classify whether a car is more likely to be stolen (1) or not (1).- See also
www.inf.u-szeged.hu/~ormandi/ai2/06-naiveBayes-example.pdf > runMain scalation.analytics.classifier.par.NaiveBayesTest
-
object
NaiveBayesTest2 extends App
The
NaiveBayesTest2
object is used to test the 'NaiveBayes' class.The
NaiveBayesTest2
object is used to test the 'NaiveBayes' class. Given whether a person is Fast and/or Strong, classify them as making C = 1 or not making C = 0 the football team. > runMain scalation.analytics.classifier.par.NaiveBayesTest2 -
object
NaiveBayesTest3 extends App
The
NaiveBayesTest3
object is used to test the 'NaiveBayes' class.The
NaiveBayesTest3
object is used to test the 'NaiveBayes' class. > runMain scalation.analytics.classifier.par.NaiveBayesTest3 -
object
TANBayes
The
TANBayes
object is the companion object for theTANBayes
class. -
object
TANBayes0
The
TANBayes0
object is the companion object for theTANBayes0
class. -
object
TANBayesTest extends App
The
TANBayesTest
object is used to test theTANBayes
class.The
TANBayesTest
object is used to test theTANBayes
class. Classify whether a car is more likely to be stolen (1) or not (1).- See also
www.inf.u-szeged.hu/~ormandi/ai2/06-AugNaiveBayes-example.pdf > runMain scalation.analytics.classifier.par.TANBayesTest
-
object
TANBayesTest2 extends App
The
TANBayesTest2
object is used to test theTANBayes
class.The
TANBayesTest2
object is used to test theTANBayes
class. Given whether a person is Fast and/or Strong, classify them as making C = 1 or not making C = 0 the football team. > runMain scalation.analytics.classifier.par.TANBayesTest2 -
object
TANBayesTest3 extends App
The
TANBayesTest3
object is used to test theTANBayes
class.The
TANBayesTest3
object is used to test theTANBayes
class. > runMain scalation.analytics.classifier.par.TANBayesTest3 -
object
TwoBAN_OS
The
TwoBAN_OS
object is the companion object for theTwoBAN_OS
class. -
object
TwoBAN_OS0
The
TwoBAN_OS0
object is the companion object for theTwoBAN_OS0
class. -
object
TwoBAN_OSTest extends App
The
TwoBAN_OSTest
object is used to test theTwoBAN_OS
class.The
TwoBAN_OSTest
object is used to test theTwoBAN_OS
class. Classify whether a car is more likely to be stolen (1) or not (1).- See also
www.inf.u-szeged.hu/~ormandi/ai2/06-TwoBAN_OS-example.pdf > runMain scalation.analytics.classifier.par.TwoBAN_OSTest
-
object
TwoBAN_OSTest2 extends App
The
TwoBAN_OSTest2
object is used to test theTwoBAN_OS
class.The
TwoBAN_OSTest2
object is used to test theTwoBAN_OS
class. Given whether a person is Fast and/or Strong, classify them as making C = 1 or not making C = 0 the football team. > runMain scalation.analytics.classifier.par.TwoBAN_OSTest2 -
object
TwoBAN_OSTest3 extends App
The
TwoBAN_OSTest3
object is used to test theTwoBAN_OS
class.The
TwoBAN_OSTest3
object is used to test theTwoBAN_OS
class. > runMain scalation.analytics.classifier.par.TwoBAN_OSTest3