Packages

abstract class ClassifierInt extends Classifier with Error

The ClassifierInt abstract class provides a common foundation for several classifiers that operate on integer-valued data.

Linear Supertypes
Error, Classifier, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ClassifierInt
  2. Error
  3. Classifier
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ClassifierInt(x: MatriI, y: VectoI, fn: Array[String], k: Int, cn: Array[String])

    x

    the integer-valued data vectors stored as rows of a matrix

    y

    the integer-valued classification vector, where y_i = class for row i of matrix x

    fn

    the names for all features/variables

    k

    the number of classes

    cn

    the names for all classes

Abstract Value Members

  1. abstract def classify(z: VectoI): (Int, String, Double)

    Given a new discrete data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.

    Given a new discrete data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.

    z

    the integer vector to classify

    Definition Classes
    Classifier
  2. abstract def reset(): Unit

    Reset the frequency counters.

    Reset the frequency counters.

    Definition Classes
    Classifier
  3. abstract def train(itest: IndexedSeq[Int]): Classifier

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. The indices for the testing dataset are given and the training dataset consists of all the other instances. Must be implemented in any extending class.

    itest

    the indices of the instances considered as testing data

    Definition Classes
    Classifier

Concrete Value Members

  1. def calcCorrelation: MatriD

    Calculate the correlation matrix for the feature vectors 'fea'.

    Calculate the correlation matrix for the feature vectors 'fea'. If the correlations are too high, the independence assumption may be dubious.

  2. def calcCorrelation2(zrg: Range, xrg: Range): MatriD

    Calculate the correlation matrix for the feature vectors of Z (Level 3) and those of X (level 2).

    Calculate the correlation matrix for the feature vectors of Z (Level 3) and those of X (level 2). If the correlations are too high, the independence assumption may be dubious.

    zrg

    the range of Z-columns

    xrg

    the range of X-columns

  3. def classify(xx: MatriI): VectoI

    Classify all of the row vectors in matrix 'xx'.

    Classify all of the row vectors in matrix 'xx'.

    xx

    the row vectors to classify

  4. def classify(z: VectoD): (Int, String, Double)

    Given a new continuous data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.

    Given a new continuous data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability. Override in classes that require precise real values for classification.

    z

    the real vector to classify

    Definition Classes
    ClassifierIntClassifier
  5. def crossValidate(nx: Int = 10, show: Boolean = false): Double

    Test the accuracy of the classified results by cross-validation, returning the accuracy.

    Test the accuracy of the classified results by cross-validation, returning the accuracy. The "test data" starts at 'testStart' and ends at 'testEnd', the rest of the data is "training data'. FIX - should return a StatVector

    nx

    the number of crosses and cross-validations (defaults to 10x).

    show

    the show flag (show result from each iteration)

    Definition Classes
    Classifier
  6. def crossValidateRand(nx: Int = 10, show: Boolean = false): Double

    Test the accuracy of the classified results by cross-validation, returning the accuracy.

    Test the accuracy of the classified results by cross-validation, returning the accuracy. This version of cross-validation relies on "subtracting" frequencies from the previously stored global data to achieve efficiency. FIX - are the comments correct? FIX - should return a StatVector

    nx

    number of crosses and cross-validations (defaults to 10x).

    show

    the show flag (show result from each iteration)

    Definition Classes
    Classifier
  7. def featureSelection(TOL: Double = 0.01): Unit

    Perform feature selection on the classifier.

    Perform feature selection on the classifier. Use backward elimination technique, that is, remove the least significant feature, in terms of cross- validation accuracy, in each round.

    TOL

    tolerance indicating negligible accuracy loss when removing features

  8. def fit(y: VectoI, yp: VectoI, k: Int = 2): VectoD

    Return the quality of fit including 'acc', 'prec', 'recall', 'kappa'.

    Return the quality of fit including 'acc', 'prec', 'recall', 'kappa'. Override to add more quality of fit measures.

    y

    the actual class labels

    yp

    the precicted class labels

    k

    the number of class labels

    Definition Classes
    Classifier
    See also

    ConfusionMat

    medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

  9. def fitLabel: Seq[String]

    Return the labels for the fit.

    Return the labels for the fit. Override when necessary.

    Definition Classes
    Classifier
  10. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  11. def shiftToZero(): Unit

    Shift the 'x' Matrix so that the minimum value for each column equals zero.

  12. def size: Int

    Return the number of data vectors/points in the entire dataset (training + testing),

    Return the number of data vectors/points in the entire dataset (training + testing),

    Definition Classes
    ClassifierIntClassifier
  13. def test(xx: MatriI, yy: VectoI): Double

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    xx

    the integer-valued test vectors stored as rows of a matrix

    yy

    the test classification vector, where 'yy_i = class' for row 'i' of 'xx'

  14. def test(itest: IndexedSeq[Int]): Double

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    itest

    indices of the instances considered test data

    Definition Classes
    ClassifierIntClassifier
  15. def test(testStart: Int, testEnd: Int): Double

    Test the quality of the training with a test dataset and return the fraction of correct classifications.

    Test the quality of the training with a test dataset and return the fraction of correct classifications. Can be used when the dataset is randomized so that the testing/training part of a dataset corresponds to simple slices of vectors and matrices.

    testStart

    the beginning of test region (inclusive).

    testEnd

    the end of test region (exclusive).

    Definition Classes
    Classifier
  16. def train(): Classifier

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. Must be implemented in any extending class. Can be used when the whole dataset is used for training.

    Definition Classes
    Classifier
  17. def train(testStart: Int, testEnd: Int): Classifier

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. Must be implemented in any extending class. Can be used when the dataset is randomized so that the training part of a dataset corresponds to simple slices of vectors and matrices.

    testStart

    starting index of test region (inclusive) used in cross-validation

    testEnd

    ending index of test region (exclusive) used in cross-validation

    Definition Classes
    Classifier
  18. def vc_default: Array[Int]

    Return default values for binary input data (value count 'vc' set to 2).

  19. def vc_fromData: Array[Int]

    Return value counts calculated from the input data.

    Return value counts calculated from the input data. May wish to call 'shiftToZero' before calling this method.

  20. def vc_fromData2(rg: Range): Array[Int]

    Return value counts calculated from the input data.

    Return value counts calculated from the input data. May wish to call 'shiftToZero' before calling this method.

    rg

    the range of columns to be considered