class NLS_ODE extends Predictor with Error
Given an Ordinary Differential Equation 'ODE' parameterized using the vector 'b' with Initial Value 'IV' 'y0', estimate the parameter values 'b' for the ODE using weighted Non-linear Least Squares 'NLS'.
ODE: dy/dt = f(t, y) IV: y(t0) = y0
Times series data: z(t0), z(t1), ... z(tn)
- Alphabetic
- By Inheritance
- NLS_ODE
- Error
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
NLS_ODE(z: VectorD, ts: VectorD, b_init: VectorD, w: VectorD = null)
- z
the observed values
- ts
the time points of the observations
- b_init
the initial guess for the parameter values 'b'
- w
the optional weights
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
coefficient: VectoD
Return the vector of coefficient/parameter values.
Return the vector of coefficient/parameter values.
- Definition Classes
- Predictor
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(): Unit
Compute the error and useful diagnostics.
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector FIX - implement in classes
- Definition Classes
- Predictor
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectorD
Return the quality of fit.
-
def
fitLabels: Seq[String]
Return the labels for the fit.
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
init(_objectiveF: FunctionV_2S, _y0: Double): Unit
Initialize
NLS-ODE
with the objective function and initial value/condition.Initialize
NLS-ODE
with the objective function and initial value/condition.- _objectiveF
the objective function indicating departure from observation
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predict(zz: VectoD): Double
Predict the value of 'y = f(zz)'.
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- Predictor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(): NLS_ODE
Train the predictor by fitting the parameter vector (b-vector) using a non-linear least squares method.
-
def
train(yy: VectoD): NLS_ODE
Train the predictor by fitting the parameter vector (b-vector) using a non-linear least squares method.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
wsseF(dy_dt: Derivative): Double
Function to compute the Weighted Sum of Squares Error 'SSE' for given values for parameter vector 'b'.