Packages

trait Predictor extends AnyRef

The Predictor trait provides a common framework for several predictors. A predictor is for potentially unbounded responses (real or integer). When the number of distinct responses is bounded by some relatively small integer 'k', a classifier is likdely more appropriate. Note, the 'train' method must be called first followed by 'eval'.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Predictor
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def eval(): Unit

    Compute the error and useful diagnostics for the entire dataset.

  2. abstract def predict(z: VectoD): Double

    Given a new continuous data vector z, predict the y-value of f(z).

    Given a new continuous data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

  3. abstract def train(yy: VectoD): Predictor

    Given a set of data vectors 'x's and their corresponding responses 'yy's, train the prediction function 'yy = f(x)' by fitting its parameters.

    Given a set of data vectors 'x's and their corresponding responses 'yy's, train the prediction function 'yy = f(x)' by fitting its parameters. The 'x' values must be provided by the implementing class.

    yy

    the response vector

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. val b: VectoD
    Attributes
    protected
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. def coefficient: VectoD

    Return the vector of coefficient/parameter values.

  8. val e: VectoD
    Attributes
    protected
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. def eval(xx: MatriD, yy: VectoD): Unit

    Compute the error and useful diagnostics for the test dataset.

    Compute the error and useful diagnostics for the test dataset.

    xx

    the test data matrix

    yy

    the test response vector FIX - implement in classes

  12. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  17. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

  20. def residual: VectoD

    Return the vector of residuals/errors.

  21. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  22. def toString(): String
    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped