object DualSimplexTest extends App
The DualSimplexTest
object is used to test the DualSimplex
class.
- Alphabetic
- By Inheritance
- DualSimplexTest
- App
- DelayedInit
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
args: Array[String]
- Attributes
- protected
- Definition Classes
- App
- Annotations
- @deprecatedOverriding( "args should not be overridden" , "2.11.0" )
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
executionStart: Long
- Definition Classes
- App
- Annotations
- @deprecatedOverriding( ... , "2.11.0" )
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
main(args: Array[String]): Unit
- Definition Classes
- App
- Annotations
- @deprecatedOverriding( "main should not be overridden" , "2.11.0" )
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(a: MatrixD, b: VectorD, c: VectorD, x_B: Array[Int]): Unit
Test the Dual Simplex Algorithm for solving Linear Programming problems.
Test the Dual Simplex Algorithm for solving Linear Programming problems.
- a
the constraint matrix
- b
the limit/RHS vector
- c
the cost vector
-
def
test1(): Unit
Test case 1: Initialize matrix 'a', vectors 'b' and 'c', and optionally the basis 'x_B'.
Test case 1: Initialize matrix 'a', vectors 'b' and 'c', and optionally the basis 'x_B'. For Dual Simplex, matrix 'a' and vector 'c' are not augmented. -------------------------------------------------------------------------- Minimize z = 2x_0 + 3x_1 + 4x_2 Subject to 1x_0 + 2x_1 + 1x_2 >= 3 2x_0 - 1x_1 + 3x_2 >= 4 where z is the objective variable and x is the decision vector. Since constraints are >=, multiply by rows by -1 -------------------------------------------------------------------------- Dual Solution: x = (11/5, 2/5), x_B = (0, 1), f = 28/5
- See also
Linear Programming and Network Flows, Example 6.6
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
Deprecated Value Members
-
def
delayedInit(body: ⇒ Unit): Unit
- Definition Classes
- App → DelayedInit
- Annotations
- @deprecated
- Deprecated
(Since version 2.11.0) the delayedInit mechanism will disappear