class WolfeLS extends LineSearch
The WolfeLS
class performs an inexact line search on 'f' to find a point 'x'
that exhibits
(1) sufficient decrease ('f(x)' enough less that 'f(0)') and
(2) the slope at x is less steep than the slope at 0.
That is, the line search looks for a value for 'x' satisfying the two Wolfe conditions.
f(x) <= f(0) + c1 * f'(0) * x Wolfe condition 1 (Armijo condition) |f'(x)| <= |c2 * f'(0)| Wolfe condition 2 (Strong version) f'(x) >= c2 * f'(0) Wolfe condition 2 (Weak version, more robust)
It works on scalar functions (@see WolfeLSTest
). If starting with a vector function
f(x), simply define a new function g(y) = x0 + direction * y (@see WolfeLSTest2
).
- Alphabetic
- By Inheritance
- WolfeLS
- LineSearch
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
WolfeLS(f: FunctionS2S, c1: Double = .0001, c2: Double = .9)
- f
the scalar objective function to minimize
- c1
constant for sufficient decrease (Wolfe condition 1)
- c2
constant for curvature/slope constraint (Wolfe condition 2)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
EPSILON: Double
- Attributes
- protected
- Definition Classes
- LineSearch
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
lsearch(x0: Double = 1.0, lo0: Double = 0.0, weak: Boolean = true): Double
Perform an inexact Line Search (LS) on the function 'f' to find a point 'x' that satisfies the Wolfe Conditions 1 and 2.
Perform an inexact Line Search (LS) on the function 'f' to find a point 'x' that satisfies the Wolfe Conditions 1 and 2.
- x0
the current point
- lo0
the lower bound for x
- weak
whether to use the weak (true) or strong (false) Wolfe conditions
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
search(step: Double = 1.0): Double
Perform an inexact Line Search (LS) using the Wolfe approach with defaults.
Perform an inexact Line Search (LS) using the Wolfe approach with defaults.
- step
the initial step size
- Definition Classes
- WolfeLS → LineSearch
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )