Packages

c

scalation.random

Multinomial

case class Multinomial(p: Array[Double] = Array (.4, .7, 1.0), n: Int = 5, stream: Int = 0) extends VariateVec with Product with Serializable

The Multinomial class generates random variate vectors following the multinomial distribution. This discrete RV models the multinomial trials, which generalize Bernoulli trials ({0, 1} to the case where the outcome is in {0, 1, ..., k-1}.

p

array of cumulative probabilities as CDF values

n

the number of independent trials

stream

the random number stream

See also

http://www.math.uah.edu/stat/bernoulli/Multinomial.html

Linear Supertypes
Serializable, Serializable, Product, Equals, VariateVec, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Multinomial
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. VariateVec
  7. Error
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Multinomial(p: Array[Double] = Array (.4, .7, 1.0), n: Int = 5, stream: Int = 0)

    p

    array of cumulative probabilities as CDF values

    n

    the number of independent trials

    stream

    the random number stream

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. var _discrete: Boolean

    Indicates whether the distribution is discrete or continuous (default)

    Indicates whether the distribution is discrete or continuous (default)

    Attributes
    protected
    Definition Classes
    VariateVec
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. def discrete: Boolean

    Determine whether the distribution is discrete or continuous.

    Determine whether the distribution is discrete or continuous.

    Definition Classes
    VariateVec
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  11. def gen: VectoD

    Determine the next random double vector for the particular distribution.

    Determine the next random double vector for the particular distribution.

    Definition Classes
    MultinomialVariateVec
  12. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. def igen: VectoI

    Determine the next random integer vector for the particular distribution.

    Determine the next random integer vector for the particular distribution. It is only valid for discrete random variates.

    Definition Classes
    MultinomialVariateVec
  14. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  15. val mean: VectoD
    Definition Classes
    MultinomialVariateVec
  16. val n: Int
  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. val p: Array[Double]
  21. def pf(z: VectoD): Double

    Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.

    Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.

    z

    the mass point/vector whose probability is sought

    Definition Classes
    MultinomialVariateVec
  22. val r: Random

    Random number stream selected by the stream number

    Random number stream selected by the stream number

    Attributes
    protected
    Definition Classes
    VariateVec
  23. val stream: Int
  24. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  25. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from VariateVec

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped