Packages

c

scalation.random

PoissonProcess

case class PoissonProcess(lambda: Double, stream: Int = 0) extends TimeVariate with Product with Serializable

This class generates arrival times according to a PoissonProcess. Given the current arrival time 't', generate the next arrival time.

lambda

the arrival rate (arrivals per unit time)

stream

the random number stream

See also

http://en.wikipedia.org/wiki/Poisson_process

Linear Supertypes
Serializable, Serializable, Product, Equals, TimeVariate, Variate, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PoissonProcess
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. TimeVariate
  7. Variate
  8. Error
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PoissonProcess(lambda: Double, stream: Int = 0)

    lambda

    the arrival rate (arrivals per unit time)

    stream

    the random number stream

Value Members

  1. def count(a: Double, b: Double): Int
    Definition Classes
    TimeVariate
  2. def count(tt: Double): Int

    Compute the mean as a function of time.

    Compute the mean as a function of time.

    tt

    the time point for computing the mean

    Definition Classes
    TimeVariate
  3. def discrete: Boolean

    Determine whether the distribution is discrete or continuous.

    Determine whether the distribution is discrete or continuous.

    Definition Classes
    Variate
  4. final def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  5. def gen: Double

    Generate Poisson arrival times using and exponential random variable.

    Generate Poisson arrival times using and exponential random variable.

    Definition Classes
    PoissonProcessVariate
  6. def gen1(z: Double): Double

    Determine the next random number for the particular distribution.

    Determine the next random number for the particular distribution. This version allows one paramater.

    z

    the limit paramater

    Definition Classes
    PoissonProcessVariate
  7. def igen: Int

    Determine the next random integer for the particular distribution.

    Determine the next random integer for the particular distribution. It is only valid for discrete random variates.

    Definition Classes
    Variate
  8. def igen1(z: Double): Int

    Determine the next random integer for the particular distribution.

    Determine the next random integer for the particular distribution. It is only valid for discrete random variates. This version allows one parameter.

    z

    the limit parameter

    Definition Classes
    Variate
  9. val lambda: Double
  10. val mean: Double
    Definition Classes
    TimeVariateVariate
  11. def meanF(tt: Double): Double

    Compute the mean number of arrivals for amount of time 'tt'.

    Compute the mean number of arrivals for amount of time 'tt'.

    tt

    a number of intervals

    Definition Classes
    PoissonProcessTimeVariate
  12. def pf(k: Int, a: Double, b: Double): Double

    Compute the probability 'P [ (N(b) - N(a)) = k ]'.

    Compute the probability 'P [ (N(b) - N(a)) = k ]'.

    k

    the number of arrivals in the interval

    a

    the left end of the interval

    b

    the right end of the interval

    Definition Classes
    PoissonProcessTimeVariate
  13. def pf(k: Int, tau: Double): Double

    Compute the probability 'P[ (N(t + tau) - N(t)) = k]' using a general factorial function implemented with the Gamma function and Ramanujan's Approximation.

    Compute the probability 'P[ (N(t + tau) - N(t)) = k]' using a general factorial function implemented with the Gamma function and Ramanujan's Approximation. Switches to 'pf_ln' for k >= 170 to handle large 'k'-values.

    k

    the number of arrivals in the interval

    tau

    the length of the interval

    Definition Classes
    PoissonProcessTimeVariate
  14. def pf(k: Int): Double

    Compute the probability P[ N(t) = k ] using a general factorial function implemented with the Gamma function and Ramanujan's Approximation.

    Compute the probability P[ N(t) = k ] using a general factorial function implemented with the Gamma function and Ramanujan's Approximation.

    k

    the number of arrivals in the interval

    Definition Classes
    PoissonProcessTimeVariate
    See also

    http://en.wikipedia.org/wiki/Poisson_process

  15. def pf(z: Double): Double

    Compute the probability function (pf): The probability density function (pdf) for continuous RV's or the probability mass function (pmf) for discrete RV's.

    Compute the probability function (pf): The probability density function (pdf) for continuous RV's or the probability mass function (pmf) for discrete RV's.

    z

    the mass point whose probability is sought

    Definition Classes
    TimeVariateVariate
  16. def pf_ln(k: Int, tau: Double): Double

    Compute the probability 'P[ (N(t + tau) - N(t)) = k]' using the log of Ramanujan's Approximation formula.

    Compute the probability 'P[ (N(t + tau) - N(t)) = k]' using the log of Ramanujan's Approximation formula.

    k

    the number of arrivals in the interval

    tau

    the length of the interval

  17. def pmf(k: Int = 0): Array[Double]

    Return the entire probability mass function (pmf) for finite discrete RV's.

    Return the entire probability mass function (pmf) for finite discrete RV's.

    k

    number of objects of the first type

    Definition Classes
    Variate
  18. def reset(): Unit

    Reset the global time value to zero.

    Reset the global time value to zero.

    Definition Classes
    PoissonProcessTimeVariate
  19. def sgen: String

    Determine the next random string for the particular distribution.

    Determine the next random string for the particular distribution. For better random strings, overide this method.

    Definition Classes
    Variate
  20. def sgen1(z: Double): String

    Determine the next random string for the particular distribution.

    Determine the next random string for the particular distribution. For better random strings, overide this method. This version allows one parameter.

    z

    the limit parameter

    Definition Classes
    Variate
  21. val stream: Int