object QCurve extends Serializable
The QCurve
companion object provides formulas used by the QCurve
class.
- Alphabetic
- By Inheritance
- QCurve
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
calcControlPoint(p1: R2, p2: R2, bend: Double = 0.0): R2
Calculate the location ('x', 'y') of the control point.
Calculate the location ('x', 'y') of the control point. It is positioned orthogonal to the mid point of the line connecting 'p1' and 'p2' at a distance 'dist', where 'dist = bend * || p2 - p1 ||'. A bend of 0.0 gives a straight line, while 2.0/-2.0 gives a huge bend up-right/down-left.
- p1
the starting point
- p2
the ending point
- bend
the bend or curvature
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
distance(p1: R2, p2: R2): Double
Calculate the distance or the length of the line connecting points
p1
andp2
.Calculate the distance or the length of the line connecting points
p1
andp2
.- p1
the starting point
- p2
the ending point
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
slope(p1: R2, p2: R2): Double
Calculate the slope of the line defined by points
p1
andp2
.Calculate the slope of the line defined by points
p1
andp2
. Note: if 'deltaX' is 0, the method returns infinity.- p1
the starting point
- p2
the ending point
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )