object GoodnessOfFit_KS
The GoodnessOfFit_KS
object provides methods to approximate the critical
values/p-values for the KS Test.
P(D_n < d)
- See also
sa-ijas.stat.unipd.it/sites/sa-ijas.stat.unipd.it/files/IJAS_3-4_2009_07_Facchinetti.pdf
www.jstatsoft.org/article/view/v008i18/kolmo.pdf
- Alphabetic
- By Inheritance
- GoodnessOfFit_KS
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
ksCDF(d: Double, n: Int): Double
Compute the Cumulative Distribution Function (CDF) for 'P(D_n < d)'.
Compute the Cumulative Distribution Function (CDF) for 'P(D_n < d)'. It can used for p-values or critical values for the KS test. Translated from C code given in paper below.
- d
the maximum distance between empirical and theoretical distribution
- n
the number of data points
- See also
www.jstatsoft.org/article/view/v008i18/kolmo.pdf
-
def
lilliefors(d: Double, n: Int): Double
Compute the critical value for the KS Test using the Lilliefors approximation.
Compute the critical value for the KS Test using the Lilliefors approximation. Caveat: assumes alpha = .05 and is only accurate to two digits.
- d
the maximum distance between empirical and theoretical distribution
- n
the number of data points
- See also
www.utdallas.edu/~herve/Abdi-Lillie2007-pretty.pdf FIX - use a more flexible and accurate approximation.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )