object MethodOfMoments
The MethodOfMoments
object provides methods for estimating parameters
for popular probability distributions using the Method of Moments (MOM).
The main alternative is to use Maximum Likelihood Estimators (MLE).
- See also
www.math.uah.edu/stat/point/Moments.html
- Alphabetic
- By Inheritance
- MethodOfMoments
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bernoulli(x: VectorD): Array[Double]
Estimate the parameter 'p' for the
Bernoulli
distribution.Estimate the parameter 'p' for the
Bernoulli
distribution.- x
the statistical data vector
-
def
beta(x: VectorD): Array[Double]
Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Beta
distribution.Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Beta
distribution.- x
the statistical data vector
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
exponential(x: VectorD): Array[Double]
Estimate the parameter 'mu' for the
Exponential
distribution.Estimate the parameter 'mu' for the
Exponential
distribution.- x
the statistical data vector
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
gamma(x: VectorD): Array[Double]
Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Gamma
distribution.Estimate the parameters 'a' (alpha) and 'b' (beta) for the
Gamma
distribution.- x
the statistical data vector
-
def
geometric(x: VectorD): Array[Double]
Estimate the parameter 'p' for the
Geometric
distribution.Estimate the parameter 'p' for the
Geometric
distribution.- x
the statistical data vector
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
normal(x: VectorD): Array[Double]
Estimate the parameters 'mu' and 'sigma2' for the
Normal
distribution.Estimate the parameters 'mu' and 'sigma2' for the
Normal
distribution.- x
the statistical data vector
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
pareto(x: VectorD): Array[Double]
Estimate the parameters 'a' and 'b' for the
Pareto
distribution.Estimate the parameters 'a' and 'b' for the
Pareto
distribution.- x
the statistical data vector
-
def
poisson(x: VectorD): Array[Double]
Estimate the parameter 'mu' for the
Poisson
distribution.Estimate the parameter 'mu' for the
Poisson
distribution.- x
the statistical data vector
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
uniform(x: VectorD): Array[Double]
Estimate the parameters 'a' and 'b' for the
Uniform
distribution.Estimate the parameters 'a' and 'b' for the
Uniform
distribution.- x
the statistical data vector
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )