class AR extends ForecasterVec
The AR
class provides basic time series analysis capabilities for Auto-
Regressive 'AR'. In an 'AR(p)' model, 'p' refers to the order of the
Auto-Regressive components of the model. AR
models are often used for forecasting.
Given time series data stored in vector 'y', its next value 'y_t = y(t)'
may be predicted based on prior values of 'y' and its noise:
y_t = c + Σ(φ_i y_t-i) + Σ(θ_i e_t-i) + e_t
where 'c' is a constant, 'φ' is the autoregressive coefficient vector, and 'e' is the noise vector. ------------------------------------------------------------------------------
- Alphabetic
- By Inheritance
- AR
- ForecasterVec
- Forecaster
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
AR(t: VectoD, y: VectoD)
- t
the time vector
- y
the input vector (time series data)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val acf: VectorD
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
diagnose(yy: VectoD, ee: VectoD): Unit
Compute diagnostics for the forecaster.
Compute diagnostics for the forecaster. Override to add more diagnostics. Note, for 'mse' and 'rmse', 'sse' is divided by the number of instances 'm' rather than the degrees of freedom.
- yy
the response vector, actual values
- ee
the residual/error vector
- Attributes
- protected
- Definition Classes
- Forecaster
- See also
en.wikipedia.org/wiki/Mean_squared_error
-
var
e: VectorD
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(): Unit
Compute the error and useful diagnostics for the entire dataset.
Compute the error and useful diagnostics for the entire dataset.
- Definition Classes
- ForecasterVec → Forecaster
-
def
f_(z: Double): String
Format a double value.
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit including 'sst', 'sse', 'mae', rmse' and 'rSq'.
Return the quality of fit including 'sst', 'sse', 'mae', rmse' and 'rSq'. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Note that 'rSq' is the last or number 5 measure. Override to add more quality of fit measures.
- Definition Classes
- Forecaster
-
def
fitLabel: Seq[String]
Return the labels for the fit.
Return the labels for the fit. Override when necessary.
- Definition Classes
- Forecaster
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures (use of
LinedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinedHashMap
makes it ordered). Override to add more quality of fit measures.- Definition Classes
- Forecaster
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
forecast(steps: Int = 1): VectoD
Produce the multi-step forecast for AR models.
Produce the multi-step forecast for AR models.
- steps
the number of steps to forecast, must be at least one.
- Definition Classes
- AR → Forecaster
-
def
forecast(): VectoD
Produce forecasts for one step ahead into the future
Produce forecasts for one step ahead into the future
- Definition Classes
- Forecaster
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
index_rSq: Int
- Definition Classes
- Forecaster
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
mae: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
mape: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
ml: Int
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
val
mse: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
mu: Double
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
val
n: Int
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- var pacf: VectoD
-
def
parameters: VectoD
Return the parameter vector.
Return the parameter vector.
- Definition Classes
- AR → ForecasterVec
-
def
plotFunc(fVec: VectoD, name: String): Unit
Plot a function, e.g., Auto-Correlation Function 'ACF', Partial Auto-Correlation Function 'PACF'.
Plot a function, e.g., Auto-Correlation Function 'ACF', Partial Auto-Correlation Function 'PACF'.
- fVec
the vector given function values
- name
the name of the function
- Definition Classes
- ForecasterVec
-
def
predict(): VectoD
Return a vector that is the predictions of a 'p'th order Auto-Regressive 'AR(p)' model.
Return a vector that is the predictions of a 'p'th order Auto-Regressive 'AR(p)' model.
- Definition Classes
- AR → Forecaster
-
val
rSq: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
rmse: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
def
setPQ(p_: Int): Unit
Set value for 'p'.
Set value for 'p'.
- p_
the order of the AR part of the model
-
val
sse: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
ssr: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
sst: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(p_: Int = 1): AR
Estimate the coefficient vector 'φ' for a 'p'th order Auto-Regressive 'AR(p)' model.
Estimate the coefficient vector 'φ' for a 'p'th order Auto-Regressive 'AR(p)' model.
x_t = φ_0 * x_t-1 + ... + φ_p-1 * x_t-p + e_t
Uses the Durbin-Levinson Algorithm to determine the coefficients. The 'φ' vector is 'p'th row of 'psi' matrix (ignoring the first (0th) column).
- p_
the order of the AR model
-
def
train(): AR
Train/fit an
ARMA
model to times the series data.Train/fit an
ARMA
model to times the series data. Must call setPQ first.- Definition Classes
- AR → ForecasterVec → Forecaster
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )