object TANBayes0
The TANBayes0
object is the companion object for the TANBayes0
class.
- Alphabetic
- By Inheritance
- TANBayes0
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply(xy: MatriI, fn: Strings, k: Int, cn: Strings, me: Double = me_default, vc: Array[Int] = null): TANBayes0
Create a
TANBayes0
object, passing 'x' and 'y' together in one matrix.Create a
TANBayes0
object, passing 'x' and 'y' together in one matrix.- xy
the data vectors along with their classifications stored as rows of a matrix
- fn
the names of the features
- k
the number of classes
- cn
the class names
- me
use m-estimates (me == 0 => regular MLE estimates)
- vc
the value count (number of distinct values) for each feature
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
smoothP(k: Int, n: Int, fset: Array[Boolean], parent: VectorI, vc: Array[Int], vcp: Array[Int], trainSize: Double, nu_y: VectorI, nu_X: HMatrix2[Int], nu_Xy: HMatrix3[Int], p_XyP: HMatrix4[Double]): Unit
Perform smoothing operations on the learned parameters by using Dirichlet priors to compute the posterior probabilities of the parameters given the training dataset.
Perform smoothing operations on the learned parameters by using Dirichlet priors to compute the posterior probabilities of the parameters given the training dataset.
- k
the number of class values/labels for y
- n
the total number of features/x-variables
- fset
the selected features
- parent
the parent for each feature
- vc
the value count
- vcp
the value count for parent
- trainSize
the size of the training dataset
- nu_y
the frequqncy of class y
- nu_X
the frequency of each feature X = [x_0, ... x_n-1]
- nu_Xy
the joint frequency of X and y
- p_XyP
the conditional probability of X given y and P(arent) - to be updated
- See also
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.8884&rep=rep1&type=pdf
www.cs.technion.ac.il/~dang/journal_papers/friedman1997Bayesian.pdf
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated