package analytics
The analytics
package contains classes, traits and objects for analytics.
- Alphabetic
- By Inheritance
- analytics
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
case class
AFF(f: FunctionS2S, fV: FunctionV_2V, fM: FunctionM_2M, dV: FunctionV_2V, dM: FunctionM_2M, bounds: PairD = null) extends Product with Serializable
The
AFF
class holds an Activation Function Family (AFF).The
AFF
class holds an Activation Function Family (AFF).- f
the activation function itself
- fV
the vector version of the activation function
- fM
the matrix version of the activation function
- dV
the vector version of the activation function derivative
- dM
the matrix version of the activation function derivative
- bounds
the (lower, upper) bounds on the range of the activation function
-
class
ANCOVA extends Regression with ExpandableVariable
The
ANCOVA
class supports ANalysis of COVAriance 'ANCOVA'.The
ANCOVA
class supports ANalysis of COVAriance 'ANCOVA'. It allows the addition of a categorical treatment variable 't' into a multiple linear regression. This is done by introducing dummy variables 'dj' to distinguish the treatment level. The problem is again to fit the parameter vector 'b' in the augmented regression equationy = b dot x + e = b0 + b_1 * x_1 + b_2 * x_2 + ... b_k * x_k + b_k+1 * d_1 + b_k+2 * d_2 + ... b_k+l * d_l + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
't' has categorical values/levels, e.g., treatment levels (0, ... 't.max ()')
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
-
class
ANCOVA1 extends Regression with ExpandableVariable
The
ANCOVA1
class supports ANalysis of COVAriance 'ANCOVA1'.The
ANCOVA1
class supports ANalysis of COVAriance 'ANCOVA1'. It allows the addition of a categorical treatment variable 't' into a multiple linear regression. This is done by introducing dummy variables 'dj' to distinguish the treatment level. The problem is again to fit the parameter vector 'b' in the augmented regression equationy = b dot x + e = b0 + b_1 * x_1 + b_2 * x_2 + ... b_k * x_k + b_k+1 * d_1 + b_k+2 * d_2 + ... b_k+l * d_l + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
't' has categorical values/levels, e.g., treatment levels (0, ... 't.max ()')
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
-
class
ANOVA1 extends Regression with ExpandableVariable
The
ANOVA1
class supports one-way ANalysis Of VAriance (ANOVA), i.e, it allows only one binary/categorial treatment variable.The
ANOVA1
class supports one-way ANalysis Of VAriance (ANOVA), i.e, it allows only one binary/categorial treatment variable. It is framed using General Linear Model 'GLM' notation and supports the use of one binary/categorical treatment variable 't'. This is done by introducing dummy variables 'd_j' to distinguish the treatment level. The problem is again to fit the parameter vector 'b' in the following equationy = b dot x + e = b_0 + b_1 * d_1 + b_1 * d_2 ... b_k * d_k + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- See also
ANCOVA
for models with multiple variablespsych.colorado.edu/~carey/Courses/PSYC5741/handouts/GLM%20Theory.pdf
-
case class
AddGate() extends Product with Serializable
Perform Add for vectors.
-
class
CanCorrelation extends Reducer with Error
The
CanCorrelation
class performs Canonical Correlation Analysis 'CCA' on two random vectors.The
CanCorrelation
class performs Canonical Correlation Analysis 'CCA' on two random vectors. Samples for the first one are stored in the 'x' data matrix and samples for the second are stored in the 'y' data matrix. Find vectors a and b that maximize the correlation between x * a and y * b.max {rho (x * a, y * b)}
Additional vectors orthogonal to a and b can also be found.
-
class
CoFilter_1D extends AnyRef
The
CoFilter_1D
class provides a convolution filter (cofilter) for taking a weighted average over a window of an input vector. -
class
ConvNet_1D extends PredictorMat2
The
ConvNet_1D
class implements a Convolutionsl Network model.The
ConvNet_1D
class implements a Convolutionsl Network model. The model is trained using a data matrix 'x' and response vector 'y'. -
class
CoordDescentLasso extends AnyRef
The
CoordDescentLasso
class find the optimal parameters 'b' using Coordinate Descent. -
class
CubicRegression extends Regression with ExpandableForms
The
CubicRegression
class uses multiple regression to fit a cubic with cross-terms surface to the data.The
CubicRegression
class uses multiple regression to fit a cubic with cross-terms surface to the data. For example in 2D, the cubic cross-terms regression equation isy = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_03, x_1, x_12, x_13, x_0*x_1, x_02*x_1, x_0*x_12] + e
Adds an a constant term for intercept (must not include intercept (column of ones) in initial data matrix).
- See also
scalation.metamodel.QuadraticFit
-
class
CubicXRegression extends Regression with ExpandableForms
The
CubicXRegression
class uses multiple regression to fit a cubic with cross-terms surface to the data.The
CubicXRegression
class uses multiple regression to fit a cubic with cross-terms surface to the data. For example in 2D, the cubic cross-terms regression equation isy = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_03, x_1, x_12, x_13, x_0*x_1, x_02*x_1, x_0*x_12] + e
Adds an a constant term for intercept (must not include intercept (column of ones) in initial data matrix).
- See also
scalation.metamodel.QuadraticFit
-
class
ELM_3L extends PredictorMat2
The
ELM_3L
class supports multi-output, 3-layer (input, hidden and output) Extreme-Learning Machines.The
ELM_3L
class supports multi-output, 3-layer (input, hidden and output) Extreme-Learning Machines. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters 'a' and 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output value, i.e.,yp = f1 (b * f0 (a * v))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b' are the parameters between input-hidden and hidden-output layers. Unlike
NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,ELM_3L
explicitly adds bias. FIX: useTranRegression
to allow 'f1' to be other activation functions besides 'f_id'. -
class
ELM_3L1 extends PredictorMat
The
ELM_3L1
class supports single-output, 3-layer (input, hidden and output) Extreme-Learning Machines.The
ELM_3L1
class supports single-output, 3-layer (input, hidden and output) Extreme-Learning Machines. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters 'a' and 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output value, i.e.,yp = f1 (b * f0 (a * v))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b' are the parameters between input-hidden and hidden-output layers. Unlike
NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,ELM_3L1
explicitly adds bias. Note: only uses 'f_id' implicitly, useELM_3L
for other options for 'f1'. -
class
ExpRegression extends PredictorMat
The
ExpRegression
class supports exponential regression.The
ExpRegression
class supports exponential regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the exponential regression equationlog (mu (x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k
- See also
www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf
-
trait
ExpandableForms extends AnyRef
The
ExpandableForms
trait provides the framwork for expanding a vector to include additional terms. -
trait
ExpandableVariable extends AnyRef
The
ExpandableVariable
trait provides the framwork for replacing categorical variables with dummy variables.The
ExpandableVariable
trait provides the framwork for replacing categorical variables with dummy variables. A dummy variable having 'n' levels is replaced with 'n-1' dummy variables. -
class
Fit extends QoF with Error
The
Fit
class provides methods to determine basic Quality of Fit 'QoF' measures. -
type
FunctionP2S = (VectoD, VectoD) ⇒ Double
Function from PairV to Scalar (Double)
-
class
HyperParameter extends Cloneable
The
HyperParameter
class provides a simple and flexible means for handling model hyper-parameters.The
HyperParameter
class provides a simple and flexible means for handling model hyper-parameters. A model may have one or more hyper-parameters that are organized into a map 'name -> (value, defaultV)'. -
trait
Imputation extends AnyRef
The
Imputation
trait specifies an imputation operation called 'impute' to be defined by the objects implementing it, i.e.,ImputeRegression
- impute missing values usingSimpleRegression
ImputeForward
- impute missing values using previous values and slopesImputeBackward
- impute missing values using subsequent values and slopesImputeMean
- impute missing values usind the filtered meanImputeNormal
- impute missing values using the median of Normal random variatesImputeMovingAvg
- impute missing values using the moving averageImputeNormalWin
- impute missing values using the median of Normal random variates for a window -
type
Ints = IndexedSeq[Int]
Shorthand for array of integers
-
class
KNN_Predictor extends PredictorMat
The
KNN_Predictor
class is used to predict a response value for new vector 'z'.The
KNN_Predictor
class is used to predict a response value for new vector 'z'. It works by finding its 'kappa' nearest neighbors. These neighbors essentially vote according to their prediction. The consensus is the average individual predictions for 'z'. Using a distance metric, the 'kappa' vectors nearest to 'z' are found in the training data, which are stored row-wise in data matrix 'x'. The corresponding response values are given in the vector 'y', such that the response value for vector 'x(i)' is given by 'y(i)'. -
class
LassoRegression extends PredictorMat
The
LassoRegression
class supports multiple linear regression.The
LassoRegression
class supports multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e
where 'e' represents the residuals (the part not explained by the model).
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
-
class
MV_Regression extends PredictorMat2
The
MV_Regression
class supports multi-variate, multiple linear regression.The
MV_Regression
class supports multi-variate, multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
Five factorization techniques are provided:
'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: better than Inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf Note, not intended for use when the number of degrees of freedom 'df' is negative.
en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
-
type
Matrices = IndexedSeq[MatriD]
Collection of matrices
-
trait
Model extends Error
The
Model
trait provides a common framework for all analytics models and serves as base trait forClassifier
andPredcitor
traits.The
Model
trait provides a common framework for all analytics models and serves as base trait forClassifier
andPredcitor
traits. The 'train' and 'eval' methods must be called first, e.g.,val model = NullModel (y) model.train (null, y).eval (null, y)
-
trait
ModelFactory extends Error
The
ModelFactory
trait is intended for use inModel
factory objects.The
ModelFactory
trait is intended for use inModel
factory objects. It supports expansion of the data matrix and rescaling of data values. When the 'rescale' flag is on/true, the companion object factory 'apply' functions should rescale or normalize the data appropriately to the particular modeling technique (or even to the level of the activation function used). In ScalaTion, model constructors do not rescale, but 'apply' functions that call model constructors need to provide this option. For example,val model1 = new Regression (x, y, fname, hparam, technique) val model2 = Regression (x, y, fname, hparam, technique)
'model1' will not have its data rescaled, while 'model2' will.
-
case class
ModelStudy(name: String, problem: String, literature: IndexedSeq[URL], models: IndexedSeq[Model], datasets: IndexedSeq[URL], tables: IndexedSeq[Relation], matrices: IndexedSeq[MatriD]) extends Error with Product with Serializable
The
ModelStudy
maintains information about a modeling study.The
ModelStudy
maintains information about a modeling study.- name
the unique for the modeling study
- problem
the problem statement for the study
- literature
the relevant literature for the modeling study
- models
the models used for the modeling study
- datasets
the datasets used for the modeling study
- tables
the relational tables used for the modeling study
- matrices
the data matrices used for the modeling study
-
case class
MultiplyGate() extends Product with Serializable
MultiplyGate is to perfrom dot product from input and weights 'w'.
-
class
NMFactorization extends Reducer
The
NMFactorization
class factors a matrix 'x' into two non negative matrices 'w' and 'h' such that 'x = wh' approximately.The
NMFactorization
class factors a matrix 'x' into two non negative matrices 'w' and 'h' such that 'x = wh' approximately.- See also
en.wikipedia.org/wiki/Non-negative_matrix_factorization
-
case class
NetParam(w: MatriD, b: VectoD = null) extends Product with Serializable
The
NetParam
class bundles parameter weights and biases together.The
NetParam
class bundles parameter weights and biases together.- w
the weight matrix
- b
the optional bias/intercept vector (null => not used)
-
type
NetParams = IndexedSeq[NetParam]
Collection of
NetParam
s -
class
NeuralNet_2L extends PredictorMat2
The
NeuralNet_2L
class supports multi-output, 2-layer (input and output) Neural-Networks.The
NeuralNet_2L
class supports multi-output, 2-layer (input and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the weights/parameters 'b' connecting the layers, so that for a new input vector 'z', the net can predict the output value, i.e.,yp_j = f (b dot z)
where 'f' is the activation function and the parameters 'b' gives the weights between input and output layers. No batching is used for this algorithm. Note, 'b0' is treated as the bias, so 'x0' must be 1.0.
-
class
NeuralNet_3L extends PredictorMat2
The
NeuralNet_3L
class supports multi-output, 3-layer (input, hidden and output) Neural-Networks.The
NeuralNet_3L
class supports multi-output, 3-layer (input, hidden and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters 'a' and 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output value, i.e.,yp = f1 (b * f0 (a * v))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b' are the parameters between input-hidden and hidden-output layers. Unlike
NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,NeuralNet_3L
explicitly adds bias. -
class
NeuralNet_3L1 extends NeuralNet_3L
The
NeuralNet_3L1
class supports multi-output, 3-layer (input, hidden and output) Neural-Networks.The
NeuralNet_3L1
class supports multi-output, 3-layer (input, hidden and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters 'a' and 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output value, i.e.,yp = f1 (b * f0 (a * v))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b' are the parameters between input-hidden and hidden-output layers. Unlike
NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,NeuralNet_3L1
explicitly adds bias. -
class
NeuralNet_XL extends PredictorMat2
The
NeuralNet_XL
class supports multi-output, multi-layer (input, multiple hidden and output) Neural-Networks.The
NeuralNet_XL
class supports multi-output, multi-layer (input, multiple hidden and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the weight and bias parameters connecting the layers, so that for a new input vector 'v', the net can predict the output value. Defaults to two hidden layers. This implementation is partially adapted from Michael Nielsen's Python implementation found in- See also
github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network2.py
github.com/MichalDanielDobrzanski/DeepLearningPython35/blob/master/network2.py ------------------------------------------------------------------------------
-
class
NeuralNet_XLT extends NeuralNet_XL
The
NeuralNet_XLT
class supports multi-output, multi-layer (input, {hidden} and output) Neural-Networks with Transfer Learning.The
NeuralNet_XLT
class supports multi-output, multi-layer (input, {hidden} and output) Neural-Networks with Transfer Learning. A layer (first hidden by default) from a neural- network model trained on a related dataset is transferred into that position in 'this' model. Given several input vectors and output vectors (training data), fit the parameters 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output vector. -
trait
NoFeatureSelection extends AnyRef
The
NoFeatureSelection
trait is for modeling techniques that do not support feature selection (adding/remove variables from the model).The
NoFeatureSelection
trait is for modeling techniques that do not support feature selection (adding/remove variables from the model). For example,SimpleRegression
only has one feature/predictor variable, so feature selection makes no sense for this modeling technique. Therefore the 'forwardSel' defined inPredictor
is set to throw an exception. -
trait
NoFeatureSelectionMat extends AnyRef
The
NoFeatureSelectionMat
trait is for modeling techniques that do not support feature selection (adding/remove variables from the model).The
NoFeatureSelectionMat
trait is for modeling techniques that do not support feature selection (adding/remove variables from the model). For example,SimpleRegression
only has one feature/predictor variable, so feature selection makes no sense for this modeling technique. Therefore the 'buildModel' method specified inPredictorMat
and is called by 'forwardSel' and 'backwardElim' is set to throw an exception. -
case class
Node(f: Int, branch: Int, yp: Double, thresh: Double, depth: Int, pthresh: Double, pfea: Int, leaf: Boolean = false) extends Product with Serializable
Class that contains information for a tree node.
Class that contains information for a tree node.
- f
the feature of the node, if it is leaf, contains the feature of its parent
- branch
the branch value (0 => left, 1 => right)
- yp
leaf node's prediction for y
- thresh
the threshold for continuous feature
- depth
the current depth of the node
- pthresh
the threshold for parent node
- pfea
the feature of parent node
- leaf
Boolean
value indicate whether is a leaf node
-
class
NonLinRegression extends PredictorMat with NoFeatureSelectionMat
The
NonLinRegression
class supports non-linear regression.The
NonLinRegression
class supports non-linear regression. In this case, 'x' can be multi-dimensional '[1, x1, ... xk]' and the function 'f' is non-linear in the parameters 'b'. Fit the parameter vector 'b' in the regression equationy = f(x, b) + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector 'b' by using Non-linear Programming to minimize Sum of Squares Error 'SSE'.
- See also
www.bsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf
-
class
NullModel extends Fit with Predictor with NoFeatureSelection
The
NullModel
class implements the simplest type of predictive modeling technique that just predicts the response 'y' to be the mean.The
NullModel
class implements the simplest type of predictive modeling technique that just predicts the response 'y' to be the mean. Fit the parameter vector 'b' in the null regression equationy = b dot x + e = b0 + e
where 'e' represents the residual/error vector (the part not explained by the model).
-
type
PairD = (Double, Double)
Pair of doubles
-
type
PairI = (Int, Int)
Pair of integers
-
type
PairV = (VectoD, VectoD)
Pair of double vectors
-
class
Perceptron extends PredictorMat
The
Perceptron
class supports single-output, 2-layer (input and output) Neural-Networks.The
Perceptron
class supports single-output, 2-layer (input and output) Neural-Networks. Although perceptrons are typically used for classification, this class is used for prediction. Given several input vectors and output values (training data), fit the weights/parameters 'b' connecting the layers, so that for a new input vector 'z', the net can predict the output value, i.e.,z = f (b dot z)
The parameter vector 'b' (w) gives the weights between input and output layers. Note, 'b0' is treated as the bias, so 'x0' must be 1.0.
-
class
PoissonRegression extends PredictorMat
The
PoissonRegression
class supports Poisson regression.The
PoissonRegression
class supports Poisson regression. In this case, x' may be multi-dimensional '[1, x_1, ... x_k]'. Fit the parameter vector 'b' in the Poisson regression equationlog (mu(x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k
where 'e' represents the residuals (the part not explained by the model) and 'y' is now integer valued.
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
-
class
PolyORegression extends Regression with ExpandableForms
The
PolyORegression
class supports orthogonal polynomial regression.The
PolyORegression
class supports orthogonal polynomial regression. In this case, 't' is expanded to an orthononalization of '[1, t, t2 ... tk]'. Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_0 + b_1 * t + b_2 * t2 ... b_k * tk + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- See also
www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx
-
class
PolyRegression extends Regression with ExpandableForms
The
PolyRegression
class supports polynomial regression.The
PolyRegression
class supports polynomial regression. In this case, 't' is expanded to '[1, t, t2 ... tk]'. Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_0 + b_1 * t + b_2 * t2 ... b_k * tk + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- See also
www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx
-
trait
Predictor extends Model
The
Predictor
trait provides a common framework for several types of predictors.The
Predictor
trait provides a common framework for several types of predictors.y = f(x; b) + e
y = response/output value x = predictor/input vector b = parameter vector e = residual/error value
A predictor is for potentially unbounded responses (real or integer). When the number of distinct responses is bounded by some relatively small integer 'k', a classifier is likely more appropriate. Note, the 'train' method (from
Model
) must be called first followed by 'eval'. -
abstract
class
PredictorMat extends Fit with Predictor
The
PredictorMat
abstract class supports multiple predictor analytics, such asRegression
.The
PredictorMat
abstract class supports multiple predictor analytics, such asRegression
. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in for example the regression equationy = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e
Note, "protected val" arguments required by
ResponseSurface
. -
abstract
class
PredictorMat2 extends Predictor
The
PredictorMat2
abstract class provides the basic structure and API for a variety of modeling techniques with multiple outputs/responses, e.g., Neural Networks. -
class
PrincipalComponents extends Reducer with Error
The
PrincipalComponents
class performs the Principal Component Analysis 'PCA' on data matrix 'x'.The
PrincipalComponents
class performs the Principal Component Analysis 'PCA' on data matrix 'x'. It can be used to reduce the dimensionality of the data. First find the Principal Components 'PC's by calling 'findPCs' and then call 'reduce' to reduce the data (i.e., reduce matrix 'x' to a lower dimensionality matrix). -
trait
QoF extends AnyRef
The
QoF
trait defines methods to determine basic Quality of Fit 'QoF' measures. -
class
QuadELM_3L1 extends PredictorMat
The
QuadELM_3L1
class supports multi-output, 3-layer (input, hidden and output) Extreme-Learning Machines.The
QuadELM_3L1
class supports multi-output, 3-layer (input, hidden and output) Extreme-Learning Machines. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters 'a' and 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output value, i.e.,yp = forms (f1 (b * f0 (a * v)))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b' are the parameters between input-hidden and hidden-output layers. Unlike
NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,QuadELM_3L1
explicitly adds bias. 'forms' expands a vector to include quadratic forms. Note: only uses 'f_id' implicitly, useELM_3L
for other options for 'f1'. -
class
QuadRegression extends Regression with ExpandableForms
The
QuadRegression
class uses multiple regression to fit a quadratic surface to the data.The
QuadRegression
class uses multiple regression to fit a quadratic surface to the data. For example in 2D, the quadratic regression equation isy = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_1, x_12] + e
Has no interaction/cross-terms and adds an a constant term for intercept (must not include intercept (column of ones) in initial data matrix).
- See also
scalation.metamodel.QuadraticFit
-
class
QuadXELM_3L1 extends PredictorMat
The
QuadXELM_3L1
class supports multi-output, 3-layer (input, hidden and output) Extreme-Learning Machines.The
QuadXELM_3L1
class supports multi-output, 3-layer (input, hidden and output) Extreme-Learning Machines. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters 'a' and 'b' connecting the layers, so that for a new input vector 'v', the net can predict the output value, i.e.,yp = forms (f1 (b * f0 (a * v)))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b' are the parameters between input-hidden and hidden-output layers. Unlike
NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,QuadXELM_3L1
explicitly adds bias. 'forms' expands a vector to include quadratic forms with cross terms. Note: only uses 'f_id' implicitly, useELM_3L
for other options for 'f1'. -
class
QuadXRegression extends Regression with ExpandableForms
The
QuadXRegression
class uses multiple regression to fit a quadratic with cross-terms to the data.The
QuadXRegression
class uses multiple regression to fit a quadratic with cross-terms to the data. For example in 2D, the quadratic cross regression equation isy = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_1, x_0*x_1, x_12] + e
Adds an a constant term for intercept (must not include intercept (column of ones) in initial data matrix).
- See also
scalation.metamodel.QuadraticFit
-
class
QuadraticFit extends AnyRef
The
QuadraticFit
class uses multiple regression to fit a quadratic surface to the function 'f'.The
QuadraticFit
class uses multiple regression to fit a quadratic surface to the function 'f'. This is useful when computing 'f' is costly, for example in simulation optimization. The fit is over a multi-dimensional grid and can be used for interpolation and limited extrapolation. -
class
RecurrentNeuralNet extends Error
The
RecurrentNeuralNet
class feeds input in sequential time into hidden layer.The
RecurrentNeuralNet
class feeds input in sequential time into hidden layer. It uses parameter U, W, V in network. where U is parameter for input x, W is for hidden layer z, and V is for output y We have 'St = Activate (U dot x(t) + W dot x(t-1))' and 'y(t) = softmax(V dot St)'- See also
github.com/pangolulu/rnn-from-scratch ----------------------------------------------------------------------------
-
class
RecurrentNeuralNetLayer extends AnyRef
The
RecurrentNeuralNetLayer
is a 3-layer where x denotes the input, 'y 'denotes the output and 's' is the intermediate/hidden value.The
RecurrentNeuralNetLayer
is a 3-layer where x denotes the input, 'y 'denotes the output and 's' is the intermediate/hidden value. We have 'St = Activate (U dot x(t) + W dot x(t-1))' and 'y(t) = softmax(V dot St)'. -
trait
Reducer extends AnyRef
The
Reducer
trait provides a common framework for several data reduction algorithms. -
class
Regression extends PredictorMat
The
Regression
class supports multiple linear regression.The
Regression
class supports multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
Five factorization techniques are provided:
'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: better than Inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf Note, not intended for use when the number of degrees of freedom 'df' is negative.
en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
-
class
RegressionTree extends PredictorMat
The
RegressionTree
class implements a RegressionTree selecting splitting features using minimal variance in children nodes.The
RegressionTree
class implements a RegressionTree selecting splitting features using minimal variance in children nodes. To avoid exponential choices in the selection, supporting ordinal features currently. Use companion object is recommended for generate Regression Tree. -
class
RegressionTree_GB extends PredictorMat
The
RegressionTree_GB
class uses Gradient Boosting onRegressionTree
.The
RegressionTree_GB
class uses Gradient Boosting onRegressionTree
. One Tree is included in the model at a time wisely chosen for reducing gradient. -
class
Regression_WLS extends Regression
The
Regression_WLS
class supports weighted multiple linear regression.The
Regression_WLS
class supports weighted multiple linear regression. In this case, 'xx' is multi-dimensional [1, xx_1, ... xx_k]. Weights are set to the inverse of a variable's variance, so they can compensate for such variability (heteroscedasticity). Fit the parameter vector 'b' in the regression equationyy = b dot xx + e = b_0 + b_1 * xx_1 + ... b_k * xx_k + e
where 'e' represents the residuals (the part not explained by the model). Use Weighted Least-Squares (minimizing the residuals) to fit the parameter vector
b = fac.solve (.)
The data matrix 'xx' is reweighted 'x = rootW * xx' and the response vector 'yy' is reweighted 'y = rootW * yy' where 'rootW' is the square root of the weights.
- See also
en.wikipedia.org/wiki/Least_squares#Weighted_least_squares These are then passed to Ordinary Least Squares (OLS) Regression. Five factorization techniques are provided: 'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: better than Inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
www.markirwin.net/stat149/Lecture/Lecture3.pdf
-
class
RidgeRegression extends PredictorMat
The
RidgeRegression
class supports multiple linear ridge regression.The
RidgeRegression
class supports multiple linear ridge regression. In this case, 'x' is multi-dimensional [x_1, ... x_k]. Ridge regression puts a penalty on the L2 norm of the parameters b to reduce the chance of them taking on large values that may lead to less robust models. Both the input matrix 'x' and the response vector 'y' are centered (zero mean). Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_1 * x_1 + ... b_k * x_k + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the regularized Normal Equations:
b = fac.solve (.) with regularization x.t * x + λ * I
Five factorization techniques are provided:
'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: similar, but better than inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
- See also
statweb.stanford.edu/~tibs/ElemStatLearn/
-
class
RoundRegression extends Regression
The
RoundRegression
class supports rounded multiple linear regression.The
RoundRegression
class supports rounded multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equationy = round (b dot x) + e = round (b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k) + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector 'b'
-
class
SimpleExpRegression extends PredictorMat with NoFeatureSelectionMat
The
SimpleExpRegression
class supports exponential regression.The
SimpleExpRegression
class supports exponential regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the exponential regression equationlog (mu (x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k
- See also
www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf
-
class
SimpleRegression extends PredictorMat with NoFeatureSelectionMat
The
SimpleRegression
class supports simple linear regression.The
SimpleRegression
class supports simple linear regression. In this case, the vector 'x' consists of the constant one and a single variable 'x1', i.e., (1, x1). Fit the parameter vector 'b' in the regression equationy = b dot x + e = [b0, b1] dot [1, x1] + e = b0 + b1 * x1 + e
where 'e' represents the residuals (the part not explained by the model).
-
class
SimplerRegression extends PredictorMat with NoFeatureSelectionMat
The
SimplerRegression
class supports simpler linear regression.The
SimplerRegression
class supports simpler linear regression. In this case, the vector 'x' consists of a single variable 'x0'. Fit the parameter vector 'b' in the regression equationy = b dot x + e = [b0] dot [x0] + e = b0 * x0 + e
where 'e' represents the residuals (the part not explained by the model). The simpler regression model has no intercept parameter, only a slope parameter.
- See also
SimpleRegression
for both intercept and slope parameters
-
class
Softmax extends AnyRef
Softmax class calculate softmax regularization for the input
-
class
StoppingRule extends AnyRef
The
StoppingRule
class provides a stopping rule to terminating the iterative steps in an optimization early. -
type
Strings = Array[String]
Shorthand for array of strings
-
class
SumQueue extends AnyRef
The
SumQueue
class retains the last 'q' elements as well as the running total in 'sum' and number of elements in 'size_', making it efficient to compute moving averages. -
class
SumSqQueue extends AnyRef
The
SumQueue
class retains the last 'q' elements as well as the running total in 'sum' and number of elements in 'size_', making it efficient to compute moving averages. -
class
Tanh extends AnyRef
The
Tanh
class implements Tanh and derivative for vector version -
class
TranRegression extends Regression
The
TranRegression
class supports transformed multiple linear regression.The
TranRegression
class supports transformed multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equationtransform (y) = b dot x + e = b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k + e
where 'e' represents the residuals (the part not explained by the model) and 'transform' is the function (defaults to log) used to transform the response vector 'y'. Common transforms include 'log (y)', 'sqrt (y)' when 'y > 0', or even 'sq (y)', 'exp (y)'. More generally, a Box-Cox Transformation may be applied.
- See also
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.7176&rep=rep1&type=pdf Use Least-Squares (minimizing the residuals) to fit the parameter vector 'b' Note: this class does not provide transformations on columns of matrix 'x'.
www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx
-
class
TrigRegression extends Regression with ExpandableForms
The
TrigRegression
class supports trigonometric regression.The
TrigRegression
class supports trigonometric regression. In this case, 't' is expanded to '[1, sin (wt), cos (wt), sin (2wt), cos (2wt), ...]'. Fit the parameter vector 'b' in the regression equationy = b dot x + e = b_0 + b_1 sin (wt) + b_2 cos (wt) + b_3 sin (2wt) + b_4 cos (2wt) + ... + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- See also
link.springer.com/article/10.1023%2FA%3A1022436007242#page-1
-
case class
Variable(xj: VectoD, j: Int, kind: VariableKind.VariableKind = Continuous, name_: String = null, concept: String = null) extends Product with Serializable
The
Variable
class provides meta-data for a variable including its kind, distinct values, name and optional ontological concept.The
Variable
class provides meta-data for a variable including its kind, distinct values, name and optional ontological concept. The variable may be an input variable (feature) or an output variable (response). Typically, it represents a column 'xj' in a data matrix. --------------------------------------------------------------------------- Several modeling techniques such as decision trees need to divide the values into groups, e.g., for branch values: When 'xj' is categorical, these will be all its distinct values. Otherwise, these will be 0 (up to threshold) or 1 (above threshold).- xj
the column vector (feature/response)
- j
the index position within the relevant data matrix
- kind
indication of the variable kind
- concept
an optional URI for an optological concept
- See also
classifier.Node
for 'threshold'
-
type
Vectors = IndexedSeq[VectoD]
Collection of vectors
Value Members
-
val
BASE_DIR: String
The relative path for base directory
-
def
chopr(y: VectoD, te: Int, te_size: Int, tr_size: Int): (VectoD, VectoD)
Chop the testing 'te' and training 'tr' datasets out of the full dataset for rolling validation where the training set is before the testing set.
Chop the testing 'te' and training 'tr' datasets out of the full dataset for rolling validation where the training set is before the testing set. This version works for models without an 'x' componenet, only 'y'.
- y
the full response/output vector
- te
the start (inclusive) of the testing region
- te_size
the size of the testing region
- tr_size
the size of the training region
-
def
chopr(x: MatriD, y: VectoD, te: Int, te_size: Int, tr_size: Int): (MatriD, VectoD, MatriD, VectoD)
Chop the testing 'te' and training 'tr' datasets out of the full dataset for rolling validation where the training set is before the testing set.
Chop the testing 'te' and training 'tr' datasets out of the full dataset for rolling validation where the training set is before the testing set.
- x
the full data/input matrix
- y
the full response/output vector
- te
the start (inclusive) of the testing region
- te_size
the size of the testing region
- tr_size
the size of the training region
-
def
diagnoseMat(x: MatriD): Unit
Diagnose matrix 'x' looking for high correlation, high condition number, lower than expected rank, zero variance columns (there should only be one).
Diagnose matrix 'x' looking for high correlation, high condition number, lower than expected rank, zero variance columns (there should only be one).
- x
the data matrix to diagnose
-
def
findInfinity(x: VectoD): IndexedSeq[Int]
Find values in a vector of infinite magnitude, returning all the index poistions.
Find values in a vector of infinite magnitude, returning all the index poistions.
- x
the vector in question
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
pullResponse(xy: MatriD, col: Int = -1): (MatriD, VectoD)
Pull out the designated response column from the combined data-resposnse matrix, returning the data matrix 'x' and response vector 'y'.
Pull out the designated response column from the combined data-resposnse matrix, returning the data matrix 'x' and response vector 'y'. When 'col' is negative or the last column, slice out the last column.
- xy
the combined data-response matrix
- col
the designated response column to be pulled out
-
def
rSqF(y: VectoD, yp: VectoD, skip: Int): Double
Calculate the Coefficient of Determination (R^2) with skipping
Calculate the Coefficient of Determination (R^2) with skipping
- y
the actual values in the m-dimensional output/response vector
- yp
the predicted/forecasted y-vector
- skip
skip the first 'skip' values (e.g., due to forecasting start up)
-
def
rSqF(y: VectoD, yp: VectoD): Double
Calculate the Coefficient of Determination (R^2).
Calculate the Coefficient of Determination (R^2).
- y
the actual values in the m-dimensional output/response vector
- yp
the predicted/forecasted y-vector
-
def
shift_r(y1: VectoD, y2: VectoD): VectoD
Shift the training dataset right by 'd2 = y2.dim' instances, filling in from the testing dataset.
Shift the training dataset right by 'd2 = y2.dim' instances, filling in from the testing dataset. Used to update the training dataset before retraining, e.g., in rolling validation. This version works for models without an 'x' componenet, only 'y'.
- y1
the training dataset (vector)
- y2
the portion of the testing dataset to be shifted in (vector)
-
def
shift_r(xy1: (MatriD, VectoD), xy2: (MatriD, VectoD)): (MatriD, VectoD)
Shift the training dataset right by 'd2 = xy2._2.dim' instances, filling in from the testing dataset.
Shift the training dataset right by 'd2 = xy2._2.dim' instances, filling in from the testing dataset. Used to update the training dataset before retraining, e.g., in rolling validation.
- xy1
the training dataset (matrix, vector)
- xy2
the portion of the testing dataset to be shifted in (matrix, vector)
-
def
smapeF(y: VectoD, yp: VectoD, skip: Int): Double
Calculate the symmetric Mean Absolute Percentage Error (sMAPE) with skipping.
Calculate the symmetric Mean Absolute Percentage Error (sMAPE) with skipping. It is the mean of the absolute errors over the average of the absolute values for the actual and predicted response.
- y
the actual values in the m-dimensional output/response vector
- yp
the predicted/forecasted y-vector
- skip
skip the first 'skip' values (e.g., due to forecasting start up)
-
def
smapeF(y: VectoD, yp: VectoD): Double
Calculate the symmetric Mean Absolute Percentage Error (sMAPE).
Calculate the symmetric Mean Absolute Percentage Error (sMAPE).
- y
the actual values in the m-dimensional output/response vector
- yp
the predicted/forecasted y-vector
-
def
sseF(y: MatriD, yp: MatriD): Double
Calculate the sum of squared errors (sse).
Calculate the sum of squared errors (sse).
- y
the actual response/output matrix
- yp
the predicted response/output matrix
-
def
sseF(y: VectoD, yp: VectoD, skip: Int): Double
Calculate the sum of squared errors (sse) with skipping.
Calculate the sum of squared errors (sse) with skipping.
- y
the actual response/output vector
- yp
the predicted response/output vector
- skip
skip the first 'skip' values (e.g., due to forecasting start up)
-
def
sseF(y: VectoD, yp: VectoD): Double
Calculate the sum of squared errors (sse).
Calculate the sum of squared errors (sse).
- y
the actual response/output vector
- yp
the predicted response/output vector
-
def
sstF(y: VectoD, skip: Int): Double
Calculate the sum of squares total (ssr + sse) with skipping.
Calculate the sum of squares total (ssr + sse) with skipping.
- y
the actual values in the m-dimensional output/response vector
- skip
skip the first 'skip' values (e.g., due to forecasting start up)
-
def
sstF(y: VectoD): Double
Calculate the sum of squares total (ssr + sse).
Calculate the sum of squares total (ssr + sse).
- y
the actual values in the m-dimensional output/response vector
-
def
subSample(x: MatriD, y: VectoD, nSamp: Int, str: Int): (MatriD, VectoD, Array[Int])
Create a random sub-sample of rows from matrix 'x' and vector 'y', returning the sub-sample matrix and vector and the indices selected.
Create a random sub-sample of rows from matrix 'x' and vector 'y', returning the sub-sample matrix and vector and the indices selected.
- x
the data original matrix
- y
the data original matrix
- nSamp
the desired sample size (number of rows in matrix)
- str
the random number stream to use
-
def
subSample(x: MatriD, nSamp: Int, stream: Int): (MatriD, Array[Int])
Create a random sub-sample of rows from matrix 'x', returning the sub-sample matrix and the indices selected.
Create a random sub-sample of rows from matrix 'x', returning the sub-sample matrix and the indices selected. Must change the 'stream' parameter to get a different subsample.
- x
the data original matrix
- nSamp
the desired sample size (number of rows in matrix)
- stream
the random number stream to use
-
object
ANCOVA extends Error
The
ANCOVA
companion object provides helper functions. -
object
ANCOVA1 extends Error
The
ANCOVA1
companion object provides factor functions. -
object
ANCOVA1Test extends App
The
ANCOVA1Test
object tests theANCOVA1
class using the following regression equation.The
ANCOVA1Test
object tests theANCOVA1
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*d_1 + b_4*d_2
> runMain scalation.analytics.ANCOVA1Test
-
object
ANCOVATest extends App
The
ANCOVATest
object tests theANCOVA
class using the following regression equation.The
ANCOVATest
object tests theANCOVA
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*d_1 + b_4*d_2
> runMain scalation.analytics.ANCOVATest
-
object
ANCOVATest2 extends App
The
ANCOVATest2
object tests theANCOVA
class using the following regression equation.The
ANCOVATest2
object tests theANCOVA
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*d_1 + b_4*d_2
This version needs the treatment levels to be shift down to zero. > runMain scalation.analytics.ANCOVATest2
-
object
ANCOVATest3 extends App
The
ANCOVATest3
object tests theANCOVA
object related to related to encoding a column 'x1' of strings.The
ANCOVATest3
object tests theANCOVA
object related to related to encoding a column 'x1' of strings. > runMain scalation.analytics.ANCOVATest3 -
object
ANOVA1Test extends App
The
ANOVA1Test
object tests theANOVA1
class using the following regression equation.The
ANOVA1Test
object tests theANOVA1
class using the following regression equation.y = b dot x = b_0 + b_1*d_1 + b_2*d_2
> runMain scalation.analytics.ANOVA1Test
-
object
ActivationFun
The
ActivationFun
object contains common Activation functions and provides both scalar and vector versions.The
ActivationFun
object contains common Activation functions and provides both scalar and vector versions.- See also
en.wikipedia.org/wiki/Activation_function Convention: fun activation function (e.g., sigmoid) funV vector version of activation function (e.g., sigmoidV) funM matrix version of activation function (e.g., sigmoidM) funDV vector version of dervivative (e.g., sigmoidDV) funDM matrix version of dervivative (e.g., sigmoidDM) ---------------------------------------------------------------------------------- Supports: id, reLU, lreLU, eLU, tanh, sigmoid, gaussian, softmax Related functions: logistic, logit
-
object
ActivationFunTest extends App
The
ActivationFunTest
is used to test theActivationFun
object.The
ActivationFunTest
is used to test theActivationFun
object. > runMain scalation.analytics.ActivationFunTest -
object
ActivationFunTest2 extends App
The
ActivationFunTest2
is used to test theActivationFun
object.The
ActivationFunTest2
is used to test theActivationFun
object.- See also
en.wikipedia.org/wiki/Softmax_function > runMain scalation.analytics.ActivationFunTest2
-
object
CoFilterTest2 extends App
The
CoFilterTest2
object is used to test theCoFilter
class' convolutional operator.The
CoFilterTest2
object is used to test theCoFilter
class' convolutional operator. > runMain scalation.analytics.CoFilterTest2 -
object
CoFilter_1D
The
Filter
object provides the convolution and pooling operators. -
object
CoFilter_1DTest extends App
The
CoFilter_1DTest
object is used to test theCoFilter_1D
class.The
CoFilter_1DTest
object is used to test theCoFilter_1D
class. Test using the simple example from section 11.10 of ScalaTion textbook. > runMain scalation.analytics.CoFilter_1DTest -
object
ConvNet_1D
The
ConvNet_1D
companion object provides factory functions for theConvNet_1D
class. -
object
ConvNet_1DTest extends App
The
ConvNet_1DTest
object is used to test theConvNet_1D
class.The
ConvNet_1DTest
object is used to test theConvNet_1D
class. Test using the simple example from section 11.10 of ScalaTion textbook. Perform four training steps. > runMain scalation.analytics.ConvNet_1DTest -
object
ConvNet_1DTest2 extends App
The
ConvNet_1DTest2
object is used to test theConvNet_1D
class using the AutoMPG dataset.The
ConvNet_1DTest2
object is used to test theConvNet_1D
class using the AutoMPG dataset. > runMain scalation.analytics.ConvNet_1DTest2 -
object
ConvNet_1DTest3 extends App
The
ConvNet_1DTest3
object is used to test theConvNet_1D
class for the convolutional operator.The
ConvNet_1DTest3
object is used to test theConvNet_1D
class for the convolutional operator. > runMain scalation.analytics.ConvNet_1DTest3 -
object
CoordDescentLassoTest extends App
The
CoordDescentLassoTest
object testsCoordDescentLasso
class using the following regression equation.The
CoordDescentLassoTest
object testsCoordDescentLasso
class using the following regression equation.y = b dot x = b_1*x_1 + b_2*x_2.
It compares with
RidgeRegression
andRegression
- See also
http://statmaster.sdu.dk/courses/st111/module03/index.html > runMain scalation.analytics.CoordDescentLassoTest
-
object
CubicRegression extends ModelFactory
The
CubicRegression
companion object provides methods for creating functional forms. -
object
CubicRegressionTest extends App
The
CubicRegressionTest
object is used to test theCubicRegression
class.The
CubicRegressionTest
object is used to test theCubicRegression
class. > runMain scalation.analytics.CubicRegressionTest -
object
CubicRegressionTest2 extends App
The
CubicRegressionTest2
object is used to test theCubicRegression
class.The
CubicRegressionTest2
object is used to test theCubicRegression
class. > runMain scalation.as4360.htmlnalytics.CubicRegressionTest2 -
object
CubicRegressionTest3 extends App
The
CubicRegressionTest3
object tests theCubicRegression
class using the AutoMPG dataset.The
CubicRegressionTest3
object tests theCubicRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.CubicRegressionTest3 -
object
CubicRegressionTest4 extends App
The
CubicRegressionTest4
object tests theCubicRegression
class using the AutoMPG dataset.The
CubicRegressionTest4
object tests theCubicRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. Runs the cubic case. > runMain scalation.analytics.CubicRegressionTest4 -
object
CubicRegressionTest5 extends App
The
CubicRegressionTest5
object comparesRegression
vs.The
CubicRegressionTest5
object comparesRegression
vs.QuadRegression
vs. CubicRegression. using the following regression equations.y = b dot x = b_0 + b_1*x y = b dot x' = b_0 + b_1*x + b_2*x2 y = b dot x' = b_0 + b_1*x + b_2*x2 + b_3*x^3
> runMain scalation.analytics.CubicRegressionTest5
-
object
CubicXRegression extends ModelFactory
The
CubicXRegression
companion object provides methods for creating functional forms. -
object
CubicXRegressionTest extends App
The
CubicXRegressionTest
object is used to test theCubicXRegression
class.The
CubicXRegressionTest
object is used to test theCubicXRegression
class. > runMain scalation.analytics.CubicXRegressionTest -
object
CubicXRegressionTest2 extends App
The
CubicXRegressionTest2
object is used to test theCubicXRegression
class.The
CubicXRegressionTest2
object is used to test theCubicXRegression
class. > runMain scalation.analytics.CubicXRegressionTest2 -
object
CubicXRegressionTest3 extends App
The
CubicXRegressionTest3
object tests theCubicXRegression
class using the AutoMPG dataset.The
CubicXRegressionTest3
object tests theCubicXRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.CubicXRegressionTest3 -
object
CubicXRegressionTest4 extends App
The
CubicXRegressionTest4
object tests theCubicXRegression
class using the AutoMPG dataset.The
CubicXRegressionTest4
object tests theCubicXRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. Runs the cubic case. > runMain scalation.analytics.CubicXRegressionTest4 -
object
ELM_3L extends ModelFactory
The
ELM_3L
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines.The
ELM_3L
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
ELM_3L1 extends ModelFactory
The
ELM_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines.The
ELM_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
ELM_3L1Test extends App
The
ELM_3L1Test
object tests the multi-collinearity method in theELM_3L1
class using the following regression equation on the Blood Pressure dataset.The
ELM_3L1Test
object tests the multi-collinearity method in theELM_3L1
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt > runMain scalation.analytics.ELM_3L1Test
-
object
ELM_3L1Test2 extends App
The
ELM_3L1Test2
object trains a extreme learning machine on theExampleBasketBall
dataset.The
ELM_3L1Test2
object trains a extreme learning machine on theExampleBasketBall
dataset. > runMain scalation.analytics.ELM_3L1Test2 -
object
ELM_3L1Test3 extends App
The
ELM_3L1Test3
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
ELM_3L1Test3
object trains a extreme learning machine on theExampleAutoMPG
dataset. > runMain scalation.analytics.ELM_3L1Test3 -
object
ELM_3L1Test4 extends App
The
ELM_3L1Test4
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
ELM_3L1Test4
object trains a extreme learning machine on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.ELM_3L1Test4 -
object
ELM_3L1Test5 extends App
The
ELM_3L1Test5
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
ELM_3L1Test5
object trains a extreme learning machine on theExampleAutoMPG
dataset. This tests forward feature/variable selection. > runMain scalation.analytics.ELM_3L1Test5 -
object
ELM_3L1Test6 extends App
The
ELM_3L1Test6
object trains a neural network on theExampleAutoMPG
dataset.The
ELM_3L1Test6
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2. > runMain scalation.analytics.ELM_3L1Test6 -
object
ELM_3LTest extends App
The
ELM_3LTest
object is used to test theELM_3L
class.The
ELM_3LTest
object is used to test theELM_3L
class.- See also
www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf > runMain scalation.analytics.ELM_3LTest
-
object
ELM_3LTest2 extends App
The
ELM_3LTest2
object trains a extreme learning machine on theExampleBasketBall
dataset.The
ELM_3LTest2
object trains a extreme learning machine on theExampleBasketBall
dataset. > runMain scalation.analytics.ELM_3LTest2 -
object
ELM_3LTest3 extends App
The
ELM_3LTest3
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
ELM_3LTest3
object trains a extreme learning machine on theExampleAutoMPG
dataset. > runMain scalation.analytics.ELM_3LTest3 -
object
ELM_3LTest4 extends App
The
ELM_3LTest4
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
ELM_3LTest4
object trains a extreme learning machine on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.ELM_3LTest4 -
object
ELM_3LTest5 extends App
The
ELM_3LTest5
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
ELM_3LTest5
object trains a extreme learning machine on theExampleAutoMPG
dataset. This tests forward feature/variable selection. FIX (1) missing intercept/bias, (2) R^2 cv too high > runMain scalation.analytics.ELM_3LTest5 -
object
ExampleAutoMPG
The
ExampleAutoMPG
object stored the UCI AutoMPG dataset in a matrix.The
ExampleAutoMPG
object stored the UCI AutoMPG dataset in a matrix.- See also
archive.ics.uci.edu/ml/datasets/Auto+MPG
-
object
ExampleAutoMPG_Correlation extends App
The
ExampleAutoMPG_Correlation
object performs correlation analysis on the UCI AutoMPG dataset.The
ExampleAutoMPG_Correlation
object performs correlation analysis on the UCI AutoMPG dataset.- See also
archive.ics.uci.edu/ml/datasets/Auto+MPG > runMain scalation.analytics.ExampleAutoMPG_Correlation
-
object
ExampleAutoMPG_NullModel extends App
The
ExampleAutoMPG_NullModel
object performsNullModel
on the UCI AutoMPG dataset.The
ExampleAutoMPG_NullModel
object performsNullModel
on the UCI AutoMPG dataset.- See also
archive.ics.uci.edu/ml/datasets/Auto+MPG > runMain scalation.analytics.ExampleAutoMPG_NullModel
-
object
ExampleAutoMPG_Regression extends App
The
ExampleAutoMPG_Regression
object performsRegression
on the UCI AutoMPG dataset.The
ExampleAutoMPG_Regression
object performsRegression
on the UCI AutoMPG dataset.- See also
archive.ics.uci.edu/ml/datasets/Auto+MPG > runMain scalation.analytics.ExampleAutoMPG_Regression
-
object
ExampleAutoMPG_SimpleRegression extends App
The
ExampleAutoMPG_SimpleRegression
object performsSimpleRegression
on the UCI AutoMPG dataset.The
ExampleAutoMPG_SimpleRegression
object performsSimpleRegression
on the UCI AutoMPG dataset.- See also
archive.ics.uci.edu/ml/datasets/Auto+MPG > runMain scalation.analytics.ExampleAutoMPG_SimpleRegression
-
object
ExampleAutoMPG_SimplerRegression extends App
The
ExampleAutoMPG_SimplerRegression
object performsSimplerRegression
on the UCI AutoMPG dataset.The
ExampleAutoMPG_SimplerRegression
object performsSimplerRegression
on the UCI AutoMPG dataset.- See also
archive.ics.uci.edu/ml/datasets/Auto+MPG > runMain scalation.analytics.ExampleAutoMPG_SimplerRegression
-
object
ExampleBPressure
The
ExampleBPressure
object stores the Blood Pressure dataset in a matrix.The
ExampleBPressure
object stores the Blood Pressure dataset in a matrix.- See also
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt
-
object
ExampleBPressureTest extends App
The
ExampleBPressureTest
object test theExampleBPressure
by printing out of the vectors and matrices.The
ExampleBPressureTest
object test theExampleBPressure
by printing out of the vectors and matrices. > runMain scalation.analytics.ExampleBPressureTest -
object
ExampleBasketBall
The
ExampleBasketBall
class stores a medium-sized example dataset with data about basketball player that can be used to predict their scoring average. -
object
ExampleConcrete
The
ExampleConcrete
class stores a medium-sized example dataset from the UCI Machine Learning Repository, "Abstract: Concrete is a highly complex material.The
ExampleConcrete
class stores a medium-sized example dataset from the UCI Machine Learning Repository, "Abstract: Concrete is a highly complex material. The slump flow of concrete is not only determined by the water content, but that is also influenced by other concrete ingredients." -
object
ExampleConcreteTest extends App
The
ExampleConcreteTest
object is used to test theExampleConcrete
object.The
ExampleConcreteTest
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsRegression
. > runMain scalation.analytics.ExampleConcreteTest -
object
ExampleConcreteTest10 extends App
The
ExampleConcreteTest10
object is used to test theExampleConcrete
object.The
ExampleConcreteTest10
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_XL
with 4 layers. > runMain scalation.analytics.ExampleConcreteTes10t -
object
ExampleConcreteTest2 extends App
The
ExampleConcreteTest2
object is used to test theExampleConcrete
object.The
ExampleConcreteTest2
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsPerceptron
. > runMain scalation.analytics.ExampleConcreteTest2 -
object
ExampleConcreteTest3 extends App
The
ExampleConcreteTest3
object is used to test theExampleConcrete
object.The
ExampleConcreteTest3
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsPerceptron
. > runMain scalation.analytics.ExampleConcreteTest3 -
object
ExampleConcreteTest4 extends App
The
ExampleConcreteTest4
object is used to test theExampleConcrete
object.The
ExampleConcreteTest4
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_2L
with 'sigmoid'. > runMain scalation.analytics.ExampleConcreteTest4 -
object
ExampleConcreteTest5 extends App
The
ExampleConcreteTest5
object is used to test theExampleConcrete
object.The
ExampleConcreteTest5
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_2L
with 'sigmoid'. > runMain scalation.analytics.ExampleConcreteTest5 -
object
ExampleConcreteTest6 extends App
The
ExampleConcreteTest6
object is used to test theExampleConcrete
object.The
ExampleConcreteTest6
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_2L
with 'tanh'. > runMain scalation.analytics.ExampleConcreteTest6 -
object
ExampleConcreteTest7 extends App
The
ExampleConcreteTest7
object is used to test theExampleConcrete
object.The
ExampleConcreteTest7
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_2L
with 'id'. > runMain scalation.analytics.ExampleConcreteTest7 -
object
ExampleConcreteTest8 extends App
The
ExampleConcreteTest8
object is used to test theExampleConcrete
object.The
ExampleConcreteTest8
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_3L
with 'sigmoid'. > runMain scalation.analytics.ExampleConcreteTest8 -
object
ExampleConcreteTest9 extends App
The
ExampleConcreteTest9
object is used to test theExampleConcrete
object.The
ExampleConcreteTest9
object is used to test theExampleConcrete
object. It compares several modeling techniques. This one runsNeuralNet_3L
with 'sigmiod'. > runMain scalation.analytics.ExampleConcreteTest9 -
object
ExpRegression extends ModelFactory
The
ExpRegression
companion object provides factory apply functions and a testing method. -
object
ExpRegressionTest extends App
The
ExpRegressionTest
object testsExpRegression
class using the following exponential regression problem.The
ExpRegressionTest
object testsExpRegression
class using the following exponential regression problem. > runMain scalation.analytics.ExpRegressionTest -
object
ExpRegressionTest2 extends App
The
ExpRegressionTest2
object has a basic test for theExpRegression
class.The
ExpRegressionTest2
object has a basic test for theExpRegression
class. > runMain scalation.analytics.ExpRegressionTest -
object
Fit
The
Fit
companion object provides factory methods for assessing quality of fit for standard types of modeling techniques. -
object
FitTest extends App
The
FitTest
object is use to test theFit
class.The
FitTest
object is use to test theFit
class. > runMain scalation.analytics.FitTest -
object
HyperParameterTest extends App
The
HyperParameterTest
object is used to test theHyperParameter
class.The
HyperParameterTest
object is used to test theHyperParameter
class. runMain scalation.analytics.HyperParameterTest -
object
ImputationTest extends App
The
ImputationTest
object is used to test the objects extending theImputation
trait.The
ImputationTest
object is used to test the objects extending theImputation
trait. > runMain scalation.analytics.ImputationTest -
object
ImputationTest2 extends App
The
ImputationTest2
object is used to test the objects extending theImputation
trait.The
ImputationTest2
object is used to test the objects extending theImputation
trait. > runMain scalation.analytics.ImputationTest2 -
object
ImputeBackward extends Imputation
The
ImputeBackward
object imputes missing values using the subsequent value and slope. -
object
ImputeForward extends Imputation
The
ImputeForward
object imputes missing values using the previous value and slope. -
object
ImputeMean extends Imputation
The
ImputeMean
object imputes missing values using the filtered mean. -
object
ImputeMovingAvg extends Imputation
The
ImputeMovingAvg
object imputes missing values using the moving average. -
object
ImputeNormal extends Imputation
The
ImputeNormal
object imputes missing values using the median Normal variates. -
object
ImputeNormalWin extends Imputation
The
ImputeNormalWin
object imputes the missing values in the vector using Normal Distribution for a sliding window. -
object
ImputeRegression extends Imputation
The
ImputeRegression
object imputes missing values usingSimpleRegression
. -
object
Initializer
The
Initializer
object provides functions to initialize the parameters/weights of Neural Networks.The
Initializer
object provides functions to initialize the parameters/weights of Neural Networks. Supports Uniform, Normal and Nguyen & Widrow methods. -
object
KNN_Predictor extends ModelFactory
The
KNN_Predictor
companion object provides a factory functions. -
object
KNN_PredictorTest extends App
The
KNN_PredictorTest
object is used to test theKNN_Predictor
class.The
KNN_PredictorTest
object is used to test theKNN_Predictor
class. > runMain scalation.analytics.KNN_PredictorTest -
object
KNN_PredictorTest2 extends App
The
KNN_PredictorTest2
object is used to test theKNN_Predictor
class.The
KNN_PredictorTest2
object is used to test theKNN_Predictor
class. > runMain scalation.analytics.KNN_PredictorTest2 -
object
KNN_PredictorTest3 extends App
The
KNN_PredictorTest3
object is used to test theKNN_predictor
class.The
KNN_PredictorTest3
object is used to test theKNN_predictor
class. > runMain scalation.analytics.KNN_PredictorTest3 -
object
LassoRegression extends ModelFactory
The
LassoRegression
companion object provides factory methods for theLassoRegression
class. -
object
LassoRegressionTest extends App
The
LassoRegressionTest
object testsLassoRegression
class using the following regression equation.The
LassoRegressionTest
object testsLassoRegression
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2.
It comapres
LassoRegression
toRegression
.- See also
http://statmaster.sdu.dk/courses/st111/module03/index.html > runMain scalation.analytics.LassoRegressionTest
-
object
LassoRegressionTest2 extends App
The
LassoRegressionTest2
object testsLassoRegression
class using the following regression equation.The
LassoRegressionTest2
object testsLassoRegression
class using the following regression equation.y = b dot x = b_1*x1 + b_2*x_2.
Try non-default value for the 'lambda' hyper-parameter. > runMain scalation.analytics.LassoRegressionTest2
-
object
LassoRegressionTest3 extends App
The
LassoRegressionTest3
object testsLassoRegression
class using the following regression equation.The
LassoRegressionTest3
object testsLassoRegression
class using the following regression equation.y = b dot x = b_1*x1 + b_2*x_2.
Test regression, forward selection and backward elimination. > runMain scalation.analytics.LassoRegressionTest3
-
object
LassoRegressionTest4 extends App
The
LassoRegressionTest4
object tests theLassoRegression
class using the AutoMPG dataset.The
LassoRegressionTest4
object tests theLassoRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 Bar and R^2 cv vs. the instance index. > runMain scalation.analytics.LassoRegressionTest4 -
object
LassoRegressionTest5 extends App
The
LassoRegressionTest5
object tests theLassoRegression
class using the AutoMPG dataset.The
LassoRegressionTest5
object tests theLassoRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also uses the 'findLambda' method to search for a shrinkage parameter that roughly mininizes 'sse_cv'. > runMain scalation.analytics.LassoRegressionTest5 -
object
MV_Regression extends Error
The
MV_Regression
companion object provides factory apply functions and a testing method. -
object
MV_RegressionTest extends App
The
MV_RegressionTest
object testsMV_Regression
class using the following regression equation.The
MV_RegressionTest
object testsMV_Regression
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2.
- See also
statmaster.sdu.dk/courses/st111/module03/index.html > runMain scalation.analytics.MV_RegressionTest
-
object
MV_RegressionTest2 extends App
The
MV_RegressionTest2
object testsMV_Regression
class using the following regression equation, which has a perfect fit.The
MV_RegressionTest2
object testsMV_Regression
class using the following regression equation, which has a perfect fit.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.MV_RegressionTest2
-
object
MV_RegressionTest3 extends App
The
MV_RegressionTest3
object tests the multi-collinearity method in theMV_Regression
class using the following regression equation on the Blood Pressure dataset.The
MV_RegressionTest3
object tests the multi-collinearity method in theMV_Regression
class using the following regression equation on the Blood Pressure dataset. Also performs Collinearity Diagnostics.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html > runMain scalation.analytics.MV_RegressionTest3
-
object
MV_RegressionTest4 extends App
The
MV_RegressionTest4
object tests the multi-collinearity method in theMV_Regression
class using the following regression equation on the Blood Pressure dataset.The
MV_RegressionTest4
object tests the multi-collinearity method in theMV_Regression
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt > runMain scalation.analytics.MV_RegressionTest4
-
object
MV_RegressionTest5 extends App
The
MV_RegressionTest5
object tests the cross-validation for theMV_Regression
class using the following regression equation on the Blood Pressure dataset.The
MV_RegressionTest5
object tests the cross-validation for theMV_Regression
class using the following regression equation on the Blood Pressure dataset.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
> runMain scalation.analytics.MV_RegressionTest5
-
object
MV_RegressionTest6 extends App
The
MV_RegressionTest6
object testsMV_Regression
class using the following regression equation.The
MV_RegressionTest6
object testsMV_Regression
class using the following regression equation.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.MV_RegressionTest6
-
object
MV_RegressionTest7 extends App
The
MV_RegressionTest7
object testsMV_Regression
class using the following regression equation.The
MV_RegressionTest7
object testsMV_Regression
class using the following regression equation.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.MV_RegressionTest7
-
object
MV_RegressionTest8 extends App
The
MV_RegressionTest8
object tests theMV_Regression
class using the AutoMPG dataset.The
MV_RegressionTest8
object tests theMV_Regression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. > runMain scalation.analytics.MV_RegressionTest8 -
object
MV_RegressionTest9 extends App
The
MV_RegressionTest9
object tests theMV_Regression
class using the AutoMPG dataset.The
MV_RegressionTest9
object tests theMV_Regression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 Bar and R^2 cv vs. the instance index. > runMain scalation.analytics.MV_RegressionTest9 -
object
MatrixTransform
The
MatrixTransform
object is used to transform the columns of a data matrix 'x'.The
MatrixTransform
object is used to transform the columns of a data matrix 'x'. May also be used for a response vector 'y'. Such pre-processing of the data is required by some modeling techniques. -
object
MatrixTransformTest extends App
The
MatrixTransformTest
is used to test theMatrixTransform
object.The
MatrixTransformTest
is used to test theMatrixTransform
object. It tests centering, scaling and normalization. > runMain scalation.analytics.MatrixTransformTest -
object
MatrixTransformTest2 extends App
The
MatrixTransformTest2
is used to test theMatrixTransform
object.The
MatrixTransformTest2
is used to test theMatrixTransform
object. It tests usage ofTransformV
functional variables. > runMain scalation.analytics.MatrixTransformTest2 -
object
ModelStudy extends Serializable
The
ModelStudy
object records the names of modeling studies. -
object
NMFactorizationTest extends App
The
NMFactorizationTest
object to testNMFactorizationTest
class.The
NMFactorizationTest
object to testNMFactorizationTest
class. > runMain scalation.analytics.NMFactorizationTest -
object
NeuralNet_2L extends ModelFactory
The
NeuralNet_2L
companion object provides factory functions for buidling two-layer neural nets.The
NeuralNet_2L
companion object provides factory functions for buidling two-layer neural nets. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
NeuralNet_2LTest extends App
The
NeuralNet_2LTest
object is used to test theNeuralNet_2L
class.The
NeuralNet_2LTest
object is used to test theNeuralNet_2L
class. For this test, training data is used to fit the weights before using them for prediction.- See also
www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf > runMain scalation.analytics.NeuralNet_2LTest
-
object
NeuralNet_2LTest2 extends App
The
NeuralNet_2LTest2
object trains a neural netowrk on theExampleBasketBall
dataset.The
NeuralNet_2LTest2
object trains a neural netowrk on theExampleBasketBall
dataset. > runMain scalation.analytics.NeuralNet_2LTest2 -
object
NeuralNet_2LTest3 extends App
The
NeuralNet_2LTest3
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_2LTest3
object trains a neural netowrk on theExampleAutoMPG
dataset. > runMain scalation.analytics.NeuralNet_2LTest3 -
object
NeuralNet_2LTest4 extends App
The
NeuralNet_2LTest4
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_2LTest4
object trains a neural netowrk on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.NeuralNet_2LTest4 -
object
NeuralNet_2LTest5 extends App
The
NeuralNet_2LTest5
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_2LTest5
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection. > runMain scalation.analytics.NeuralNet_2LTest5 -
object
NeuralNet_2LTest6 extends App
The
NeuralNet_2LTest6
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_2LTest6
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2. > runMain scalation.analytics.NeuralNet_2LTest6 -
object
NeuralNet_3L extends ModelFactory
The
NeuralNet_3L
companion object provides factory functions for buidling three-layer (one hidden layer) neural nets.The
NeuralNet_3L
companion object provides factory functions for buidling three-layer (one hidden layer) neural nets. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
NeuralNet_3L1 extends ModelFactory
The
NeuralNet_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) neural nets.The
NeuralNet_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) neural nets. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
NeuralNet_3L1Test extends App
The
NeuralNet_3L1Test
object is used to test theNeuralNet_3L1
class.The
NeuralNet_3L1Test
object is used to test theNeuralNet_3L1
class.- See also
www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf > runMain scalation.analytics.NeuralNet_3L1Test
-
object
NeuralNet_3L1Test2 extends App
The
NeuralNet_3L1Test2
object trains a neural netowrk on theExampleBasketBall
dataset.The
NeuralNet_3L1Test2
object trains a neural netowrk on theExampleBasketBall
dataset. > runMain scalation.analytics.NeuralNet_3L1Test2 -
object
NeuralNet_3L1Test3 extends App
The
NeuralNet_3L1Test3
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_3L1Test3
object trains a neural netowrk on theExampleAutoMPG
dataset. > runMain scalation.analytics.NeuralNet_3L1Test3 -
object
NeuralNet_3L1Test4 extends App
The
NeuralNet_3L1Test4
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_3L1Test4
object trains a neural netowrk on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.NeuralNet_3L1Test4 -
object
NeuralNet_3L1Test5 extends App
The
NeuralNet_3L1Test5
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_3L1Test5
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection. > runMain scalation.analytics.NeuralNet_3L1Test5 -
object
NeuralNet_3L1Test6 extends App
The
NeuralNet_3L1Test6
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_3L1Test6
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2. > runMain scalation.analytics.NeuralNet_3L1Test6 -
object
NeuralNet_3LTest extends App
The
NeuralNet_3LTest
object is used to test theNeuralNet_3L
class.The
NeuralNet_3LTest
object is used to test theNeuralNet_3L
class.- See also
www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf > runMain scalation.analytics.NeuralNet_3LTest
-
object
NeuralNet_3LTest2 extends App
The
NeuralNet_3LTest2
object trains a neural netowrk on theExampleBasketBall
dataset.The
NeuralNet_3LTest2
object trains a neural netowrk on theExampleBasketBall
dataset. > runMain scalation.analytics.NeuralNet_3LTest2 -
object
NeuralNet_3LTest3 extends App
The
NeuralNet_3LTest3
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_3LTest3
object trains a neural netowrk on theExampleAutoMPG
dataset. > runMain scalation.analytics.NeuralNet_3LTest3 -
object
NeuralNet_3LTest4 extends App
The
NeuralNet_3LTest4
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_3LTest4
object trains a neural netowrk on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.NeuralNet_3LTest4 -
object
NeuralNet_3LTest5 extends App
The
NeuralNet_3LTest5
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_3LTest5
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection. > runMain scalation.analytics.NeuralNet_3LTest5 -
object
NeuralNet_3LTest6 extends App
The
NeuralNet_3LTest6
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_3LTest6
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2. > runMain scalation.analytics.NeuralNet_3LTest6 -
object
NeuralNet_XL extends ModelFactory
The
NeuralNet_XL
companion object provides factory functions for buidling multi-layer neural nets (defaults to two hidden layers).The
NeuralNet_XL
companion object provides factory functions for buidling multi-layer neural nets (defaults to two hidden layers). Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
NeuralNet_XLT extends ModelFactory
The
NeuralNet_XLT
companion object provides factory functions for buidling three-layer (one hidden layer) neural network classifiers.The
NeuralNet_XLT
companion object provides factory functions for buidling three-layer (one hidden layer) neural network classifiers. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
NeuralNet_XLTTest extends App
The
NeuralNet_XLTTest
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_XLTTest
object trains a neural netowrk on theExampleAutoMPG
dataset. This test case does not use transfer learning. A Neural Network with 2 hidden layers is created. > runMain scalation.analytics.NeuralNet_XLTTest -
object
NeuralNet_XLTTest2 extends App
The
NeuralNet_XLTTest2
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_XLTTest2
object trains a neural netowrk on theExampleAutoMPG
dataset. This test case uses transfer learning. A Neural Network with 2 hidden layers is created with the first hidden layer being transferred from a model trained on related data. FIX: find a related dataset for 'nn0'. > runMain scalation.analytics.NeuralNet_XLTTest2 -
object
NeuralNet_XLTest extends App
The
NeuralNet_XLTest
object is used to test theNeuralNet_XL
class.The
NeuralNet_XLTest
object is used to test theNeuralNet_XL
class.- See also
www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf > runMain scalation.analytics.NeuralNet_XLTest
-
object
NeuralNet_XLTest2 extends App
The
NeuralNet_XLTest2
object trains a neural netowrk on theExampleBasketBall
dataset.The
NeuralNet_XLTest2
object trains a neural netowrk on theExampleBasketBall
dataset. > runMain scalation.analytics.NeuralNet_XLTest2 -
object
NeuralNet_XLTest3 extends App
The
NeuralNet_XLTest3
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_XLTest3
object trains a neural netowrk on theExampleAutoMPG
dataset. > runMain scalation.analytics.NeuralNet_XLTest3 -
object
NeuralNet_XLTest4 extends App
The
NeuralNet_XLTest4
object trains a neural netowrk on theExampleAutoMPG
dataset.The
NeuralNet_XLTest4
object trains a neural netowrk on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.NeuralNet_XLTest4 -
object
NeuralNet_XLTest5 extends App
The
NeuralNet_XLTest5
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_XLTest5
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection. > runMain scalation.analytics.NeuralNet_XLTest5 -
object
NeuralNet_XLTest6 extends App
The
NeuralNet_XLTest6
object trains a neural network on theExampleAutoMPG
dataset.The
NeuralNet_XLTest6
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2, > runMain scalation.analytics.NeuralNet_XLTest6 -
object
NonLinRegression extends ModelFactory
The
NonLinRegression
companion object provides factory methods for buidling perceptrons.The
NonLinRegression
companion object provides factory methods for buidling perceptrons. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
NonLinRegressionTest extends App
The
NonLinRegressionTest
object tests theNonLinRegression
class: y = f(x; b) = b0 + exp (b1 * x0).The
NonLinRegressionTest
object tests theNonLinRegression
class: y = f(x; b) = b0 + exp (b1 * x0).- See also
www.bsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf Answers: sse = 49.45929986243339 fit = (VectorD (58.606566327280426, -0.03958645286504356), 0.9874574894685292) predict (VectorD (50.0)) = 8.09724678182599 FIX: check this example
-
object
NullModel extends Error
The
NullModel
companion object provides a simple factory method for building null models. -
object
NullModelTest extends App
The
NullModelTest
object is used to test theNullModel
class.The
NullModelTest
object is used to test theNullModel
class.y = b dot x + e = b0 + e
> runMain scalation.analytics.NullModelTest
-
object
NullModelTest2 extends App
The
NullModelTest2
object is used to test theNullModel
class.The
NullModelTest2
object is used to test theNullModel
class.y = b dot x + e = b0 + e
> runMain scalation.analytics.NullModelTest2
-
object
Optimizer
The
Optimizer
object gives defaults for hyper-parameters as well as other adjustable program constants. -
object
Optimizer_ADAM
The
Optimizer_SGDM
object provides functions to optimize the parameters/weights of Neural Networks with various numbers of layers.The
Optimizer_SGDM
object provides functions to optimize the parameters/weights of Neural Networks with various numbers of layers. This optimizer used Stochastic Gradient Descent with Momentum. -
object
Optimizer_SGD extends Error
The
Optimizer
object provides functions to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers.The
Optimizer
object provides functions to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer used Stochastic Gradient Descent -
object
Optimizer_SGDM
The
Optimizer_SGDM
object provides functions to optimize the parameters/weights of Neural Networks with various numbers of layers.The
Optimizer_SGDM
object provides functions to optimize the parameters/weights of Neural Networks with various numbers of layers. This optimizer used Stochastic Gradient Descent with Momentum. -
object
Perceptron extends ModelFactory
The
Perceptron
companion object provides factory methods for buidling perceptrons.The
Perceptron
companion object provides factory methods for buidling perceptrons. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
PerceptronTest extends App
The
PerceptronTest
object is used to test thePerceptron
class.The
PerceptronTest
object is used to test thePerceptron
class. For this test, training data is used to fit the weights before using them for prediction.- See also
www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf > runMain scalation.analytics.PerceptronTest
-
object
PerceptronTest2 extends App
The
PerceptronTest2
object trains a perceptron on a small dataset of temperatures from counties in Texas where the variables/factors to consider are Latitude (x1), Elevation (x2) and Longitude (x3).The
PerceptronTest2
object trains a perceptron on a small dataset of temperatures from counties in Texas where the variables/factors to consider are Latitude (x1), Elevation (x2) and Longitude (x3). The model equation is the following:y = sigmoid (w dot x) = sigmoid (w0 + w1*x1 + w2*x2 + w3*x3)
This test case illustrates how to transform the columns of the matrix so that the 'sigmoid' activation function can work effectively. Since the dataset is very small, should use 'train0' which does no batching. > runMain scalation.analytics.PerceptronTest2
-
object
PerceptronTest3 extends App
The
PerceptronTest3
object trains a perceptron on a small dataset with variables x1 and x2.The
PerceptronTest3
object trains a perceptron on a small dataset with variables x1 and x2. The model equation is the following:y = sigmoid (b dot x) = sigmoid (b0 + b1*x1 + b2*x2)
Does not call the 'train' method; improvements steps for sigmoid are explicitly in code below. > runMain scalation.analytics.PerceptronTest3
-
object
PerceptronTest4 extends App
The
PerceptronTest4
object trains a perceptron on a small dataset with variables x1 and x2.The
PerceptronTest4
object trains a perceptron on a small dataset with variables x1 and x2. The model equation is the following:y = sigmoid (b dot x) = sigmoid (b0 + b1*x1 + b2*x2)
This version calls the 'train0' method. > runMain scalation.analytics.PerceptronTest4
-
object
PerceptronTest5 extends App
The
PerceptronTest5
object trains a perceptron on a small dataset with 2 variables.The
PerceptronTest5
object trains a perceptron on a small dataset with 2 variables. > runMain scalation.analytics.PerceptronTest5 -
object
PerceptronTest6 extends App
The
PerceptronTest6
object trains a perceptron on a small dataset with 4 variables.The
PerceptronTest6
object trains a perceptron on a small dataset with 4 variables. > runMain scalation.analytics.PerceptronTest6 -
object
PerceptronTest7 extends App
The
PerceptronTest7
object trains a perceptron on theExampleBasketBall
dataset.The
PerceptronTest7
object trains a perceptron on theExampleBasketBall
dataset. > runMain scalation.analytics.PerceptronTest7 -
object
PerceptronTest8 extends App
The
PerceptronTest8
object trains a perceptron on theExampleAutoMPG
dataset.The
PerceptronTest8
object trains a perceptron on theExampleAutoMPG
dataset. > runMain scalation.analytics.PerceptronTest8 -
object
PerceptronTest9 extends App
The
PerceptronTest9
object trains a perceptron on theExampleAutoMPG
dataset.The
PerceptronTest9
object trains a perceptron on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2. > runMain scalation.analytics.PerceptronTest9 -
object
PoissonRegression
The
PoissonRegression
companion object provides factory functions. -
object
PoissonRegressionTest extends App
The
PoissonRegressionTest
object tests thePoissonRegression
class.The
PoissonRegressionTest
object tests thePoissonRegression
class.- See also
http://www.cookbook-r.com/Statistical_analysis/Logistic_regression/ Answer: b = (-8.8331, 0.4304), n_dev = 43.860, r_dev = 25.533, aci = 29.533, pseudo_rSq = 0.4178 > runMain scalation.analytics.PoissonRegressionTest
-
object
PoissonRegressionTest2 extends App
The
PoissonRegressionTest2
object tests thePoissonRegression
class.The
PoissonRegressionTest2
object tests thePoissonRegression
class.- See also
statmaster.sdu.dk/courses/st111/module03/index.html
www.stat.wisc.edu/~mchung/teaching/.../GLM.logistic.Rpackage.pdf > runMain scalation.analytics.PoissonRegressionTest2
-
object
PolyORegression extends ModelFactory
The
PolyORegression
companion object provides factory functions and functions for creating functional forms. -
object
PolyORegressionTest extends App
The
PolyORegressionTest
object testsPolyORegression
class using the following regression equation.The
PolyORegressionTest
object testsPolyORegression
class using the following regression equation.y = b dot x = b_0 + b_1*t + b_2*t^2 + ... b_k*t_k
Note, the 'order' at which R-Squared drops is QR(7), Cholesky(14), SVD(6), Inverse(13). > runMain scalation.analytics.PolyORegressionTest
-
object
PolyORegressionTest2 extends App
The
PolyORegressionTest2
object testsPolyORegression
class using the following regression equation.The
PolyORegressionTest2
object testsPolyORegression
class using the following regression equation.y = b dot x = b_0 + b_1*t + b_2*t^2 + ... b_k*t_k
> runMain scalation.analytics.PolyORegressionTest2
-
object
PolyRegression extends ModelFactory
The
PolyRegression
companion object provides factory functions and functions for creating functional forms. -
object
PolyRegressionTest extends App
The
PolyRegressionTest
object testsPolyRegression
class using the following regression equation.The
PolyRegressionTest
object testsPolyRegression
class using the following regression equation.y = b dot x = b_0 + b_1*t + b_2*t^2 + ... b_k*t_k
Note, the 'order' at which R-Squared drops is QR(7), Cholesky(14), SVD(6), Inverse(13). > runMain scalation.analytics.PolyRegressionTest
-
object
PolyRegressionTest2 extends App
The
PolyRegressionTest2
object testsPolyRegression
class using the following regression equation.The
PolyRegressionTest2
object testsPolyRegression
class using the following regression equation.y = b dot x = b_0 + b_1*t + b_2*t^2 + ... b_k*t_k
> runMain scalation.analytics.PolyRegressionTest2
-
object
PredictorMat
The
PredictorMat
companion object provides a meythod for splitting a combined data matrix in predictor matrix and a response vector. -
object
PredictorMat2
The
PredictorMat2
object provides functions for rescaling data and performing analysis. -
object
PredictorMatTest extends App
The
PredictorMatTest
is used to test thePredictorMat
abstract class and its derived classes using theExampleBasketBall
dataset containing data matrix 'x' and response vector 'y'.The
PredictorMatTest
is used to test thePredictorMat
abstract class and its derived classes using theExampleBasketBall
dataset containing data matrix 'x' and response vector 'y'. Shift imports forExampleAutoMPG
dataset. > runMain scalation.analytics.PredictorMatTest -
object
PrincipalComponentsTest extends App
The
PrincipalComponentsTest
object is used to test thePrincipalComponents
class.The
PrincipalComponentsTest
object is used to test thePrincipalComponents
class.- See also
www.ce.yildiz.edu.tr/personal/songul/file/1097/principal_components.pdf > runMain scalation.analytics.PrincipalComponentsTest
-
object
QuadELM_3L1 extends ModelFactory
The
QuadELM_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines.The
QuadELM_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
QuadELM_3L1Test extends App
The
QuadELM_3L1Test
object tests the multi-collinearity method in theQuadELM_3L1
class using the following regression equation on the Blood Pressure dataset.The
QuadELM_3L1Test
object tests the multi-collinearity method in theQuadELM_3L1
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt > runMain scalation.analytics.QuadELM_3L1Test
-
object
QuadELM_3L1Test2 extends App
The
QuadELM_3L1Test2
object trains a extreme learning machine on theExampleBasketBall
dataset.The
QuadELM_3L1Test2
object trains a extreme learning machine on theExampleBasketBall
dataset. > runMain scalation.analytics.QuadELM_3L1Test2 -
object
QuadELM_3L1Test3 extends App
The
QuadELM_3L1Test3
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
QuadELM_3L1Test3
object trains a extreme learning machine on theExampleAutoMPG
dataset. > runMain scalation.analytics.QuadELM_3L1Test3 -
object
QuadELM_3L1Test4 extends App
The
QuadELM_3L1Test4
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
QuadELM_3L1Test4
object trains a extreme learning machine on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.QuadELM_3L1Test4 -
object
QuadELM_3L1Test5 extends App
The
QuadELM_3L1Test5
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
QuadELM_3L1Test5
object trains a extreme learning machine on theExampleAutoMPG
dataset. This tests forward feature/variable selection. FIX (1) missing intercept/bias, (2) R^2 cv too high > runMain scalation.analytics.QuadELM_3L1Test5 -
object
QuadELM_3L1Test6 extends App
The
QuadELM_3L1Test6
object trains a neural network on theExampleAutoMPG
dataset.The
QuadELM_3L1Test6
object trains a neural network on theExampleAutoMPG
dataset. This tests forward feature/variable selection with plotting of R^2. > runMain scalation.analytics.QuadELM_3L1Test6 -
object
QuadRegression extends ModelFactory
The
QuadRegression
companion object provides factory functions and functions for creating functional forms. -
object
QuadRegressionTest extends App
The
QuadRegressionTest
object is used to test theQuadRegression
class.The
QuadRegressionTest
object is used to test theQuadRegression
class. > runMain scalation.analytics.QuadRegressionTest -
object
QuadRegressionTest2 extends App
The
QuadRegressionTest2
object is used to test theQuadRegression
class.The
QuadRegressionTest2
object is used to test theQuadRegression
class. > runMain scalation.analytics.QuadRegressionTest2 -
object
QuadRegressionTest3 extends App
The
QuadRegressionTest3
object is used to test theQuadRegression
class.The
QuadRegressionTest3
object is used to test theQuadRegression
class. > runMain scalation.analytics.QuadRegressionTest3 -
object
QuadRegressionTest4 extends App
The
QuadRegressionTest4
object tests theQuadRegression
class using the AutoMPG dataset.The
QuadRegressionTest4
object tests theQuadRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It comparesRegression
,QuadRegression
andQuadRegression
with normalization. > runMain scalation.analytics.QuadRegressionTest4 -
object
QuadRegressionTest5 extends App
The
QuadRegressionTest5
object tests theQuadRegression
class using the AutoMPG dataset.The
QuadRegressionTest5
object tests theQuadRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.QuadRegressionTest5 -
object
QuadRegressionTest6 extends App
The
QuadRegressionTest6
object testsQuadRegression
class using the following regression equation.The
QuadRegressionTest6
object testsQuadRegression
class using the following regression equation.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.QuadRegressionTest6
-
object
QuadRegressionTest7 extends App
The
QuadRegressionTest7
object comparesRegression
vs.The
QuadRegressionTest7
object comparesRegression
vs.QuadRegression
using the following regression equations.y = b dot x = b_0 + b_1*x y = b dot x' = b_0 + b_1*x + b_2*x^2
> runMain scalation.analytics.QuadRegressionTest7
-
object
QuadXELM_3L1 extends ModelFactory
The
QuadXELM_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines.The
QuadXELM_3L1
companion object provides factory functions for buidling three-layer (one hidden layer) extreme learning machines. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
QuadXELM_3L1Test extends App
The
QuadXELM_3L1Test
object tests the multi-collinearity method in theQuadXELM_3L1
class using the following regression equation on the Blood Pressure dataset.The
QuadXELM_3L1Test
object tests the multi-collinearity method in theQuadXELM_3L1
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt > runMain scalation.analytics.QuadXELM_3L1Test
-
object
QuadXELM_3L1Test2 extends App
The
QuadXELM_3L1Test2
object trains a extreme learning machine on theExampleBasketBall
dataset.The
QuadXELM_3L1Test2
object trains a extreme learning machine on theExampleBasketBall
dataset. > runMain scalation.analytics.QuadXELM_3L1Test2 -
object
QuadXELM_3L1Test3 extends App
The
QuadXELM_3L1Test3
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
QuadXELM_3L1Test3
object trains a extreme learning machine on theExampleAutoMPG
dataset. > runMain scalation.analytics.QuadXELM_3L1Test3 -
object
QuadXELM_3L1Test4 extends App
The
QuadXELM_3L1Test4
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
QuadXELM_3L1Test4
object trains a extreme learning machine on theExampleAutoMPG
dataset. It test cross-validation. > runMain scalation.analytics.QuadXELM_3L1Test4 -
object
QuadXELM_3L1Test5 extends App
The
QuadXELM_3L1Test5
object trains a extreme learning machine on theExampleAutoMPG
dataset.The
QuadXELM_3L1Test5
object trains a extreme learning machine on theExampleAutoMPG
dataset. This tests forward feature/variable selection. FIX (1) missing intercept/bias, (2) R^2 cv too high > runMain scalation.analytics.QuadXELM_3L1Test5 -
object
QuadXRegression extends ModelFactory
The
QuadXRegression
companion object provides methods for creating functional forms. -
object
QuadXRegressionTest extends App
The
QuadXRegressionTest
object is used to test theQuadXRegression
class.The
QuadXRegressionTest
object is used to test theQuadXRegression
class. > runMain scalation.analytics.QuadXRegressionTest -
object
QuadXRegressionTest2 extends App
The
QuadXRegressionTest2
object is used to test theQuadXRegression
class.The
QuadXRegressionTest2
object is used to test theQuadXRegression
class. > runMain scalation.analytics.QuadXRegressionTest2 -
object
QuadXRegressionTest3 extends App
The
QuadXRegressionTest3
object tests theQuadXRegression
class using the AutoMPG dataset.The
QuadXRegressionTest3
object tests theQuadXRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.QuadXRegressionTest3 -
object
QuadXRegressionTest4 extends App
The
QuadXRegressionTest4
object tests theQuadXRegression
class using the AutoMPG dataset.The
QuadXRegressionTest4
object tests theQuadXRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.QuadXRegressionTest4 -
object
QuadraticFitTest extends App
The
QuadraticFitTest
object is used to test theQuadraticFit
class for a two dimensional case. -
object
QuadraticFitTest2 extends App
The
QuadraticFitTest2
object is used to test theQuadraticFit
class for a three dimensional case. -
object
QuadraticFitTest3 extends App
The
QuadraticFitTest3
object is used to test theQuadraticFit
class for a three dimensional case with noise. -
object
RecurrentNeuralNetTest extends App
The
RecurrentNeuralNetTest
object is used to test theRecurrentNeuralNet
class.The
RecurrentNeuralNetTest
object is used to test theRecurrentNeuralNet
class. > runMain scalation.analytics.RecurrentNeuralNetTest -
object
RegTechnique extends Enumeration
The
RegTechnique
object defines the implementation techniques available. -
object
Regression extends ModelFactory
The
Regression
companion object provides factory apply functions and a testing method. -
object
RegressionTest extends App
The
RegressionTest
object testsRegression
class using the following regression equation.The
RegressionTest
object testsRegression
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2.
- See also
statmaster.sdu.dk/courses/st111/module03/index.html > runMain scalation.analytics.RegressionTest
-
object
RegressionTest10 extends App
The
RegressionTest10
object tests theRegression
class using the following regression equation.The
RegressionTest10
object tests theRegression
class using the following regression equation.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
Show effects of increasing collinearity. > runMain scalation.analytics.RegressionTest10
-
object
RegressionTest11 extends App
The
RegressionTest11
object tests theRegression
class using the AutoMPG dataset.The
RegressionTest11
object tests theRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.RegressionTest11 -
object
RegressionTest12 extends App
The
RegressionTest12
object tests theRegression
class to illustrate projection of 6 vectors/points onto a plane in 3D space, see the last exercise in Regression section of the textbook.The
RegressionTest12
object tests theRegression
class to illustrate projection of 6 vectors/points onto a plane in 3D space, see the last exercise in Regression section of the textbook.y = b dot x = b_1*x1 + b_2*x_2.
> runMain scalation.analytics.RegressionTest12
-
object
RegressionTest2 extends App
The
RegressionTest2
object testsRegression
class using the following regression equation, which has a perfect fit.The
RegressionTest2
object testsRegression
class using the following regression equation, which has a perfect fit.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.RegressionTest2
-
object
RegressionTest3 extends App
The
RegressionTest3
object tests the multi-collinearity method in theRegression
class using the following regression equation on the Blood Pressure dataset.The
RegressionTest3
object tests the multi-collinearity method in theRegression
class using the following regression equation on the Blood Pressure dataset. Also performs Collinearity Diagnostics.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html > runMain scalation.analytics.RegressionTest3
-
object
RegressionTest4 extends App
The
RegressionTest4
object tests the multi-collinearity method in theRegression
class using the following regression equation on the Blood Pressure dataset.The
RegressionTest4
object tests the multi-collinearity method in theRegression
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt > runMain scalation.analytics.RegressionTest4
-
object
RegressionTest5 extends App
The
RegressionTest5
object tests the cross-validation for theRegression
class using the following regression equation on the Blood Pressure dataset.The
RegressionTest5
object tests the cross-validation for theRegression
class using the following regression equation on the Blood Pressure dataset.y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
> runMain scalation.analytics.RegressionTest5
-
object
RegressionTest6 extends App
The
RegressionTest6
object testsRegression
class using the following regression equation.The
RegressionTest6
object testsRegression
class using the following regression equation.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.RegressionTest6
-
object
RegressionTest7 extends App
The
RegressionTest7
object testsRegression
class using the following regression equation.The
RegressionTest7
object testsRegression
class using the following regression equation.y = b dot x = b_0 + b_1*x1 + b_2*x_2.
> runMain scalation.analytics.RegressionTest7
-
object
RegressionTest8 extends App
The
RegressionTest8
object tests theRegression
class using the AutoMPG dataset.The
RegressionTest8
object tests theRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. > runMain scalation.analytics.RegressionTest8 -
object
RegressionTest9 extends App
The
RegressionTest9
object is used to test theRegression
class.The
RegressionTest9
object is used to test theRegression
class.y = b dot x = b0 + b1 * x1
This version uses gradient descent to search for the optimal solution for 'b'. Try normalizing the data first.
- See also
MatrixTransform
> runMain scalation.analytics.RegressionTest9
-
object
RegressionTree extends ModelFactory
The
RegressionTree
companion object is used to count the number of leaves and provide factory functions. -
object
RegressionTreeTest extends App
The
RegressionTreeTest
object is used to test theRegressionTree
class.The
RegressionTreeTest
object is used to test theRegressionTree
class. It tests a simple case that does not require a file to be read.- See also
translate.google.com/translate?hl=en&sl=zh-CN&u=https://www.hrwhisper.me/machine-learning-decision-tree/&prev=search > runMain scalation.analytics.RegressionTreeTest
-
object
RegressionTree_GB extends ModelFactory
The
RegressionTree_GB
companion object defines hyper-parameters and provides a factory function. -
object
RegressionTree_GBTest extends App
The
RegressionTree_GBTest
object is used to test theRegressionTree_GB
class.The
RegressionTree_GBTest
object is used to test theRegressionTree_GB
class. It tests a simple case that does not require a file to be read. > runMain scalation.analytics.RegressionTree_GBTest -
object
Regression_WLS
The
Regression_WLS
companion object provides methods for setting weights and testing. -
object
Regression_WLSTest extends App
The
Regression_WLSTest
object testsRegression_WLS
class using the following regression equation.The
Regression_WLSTest
object testsRegression_WLS
class using the following regression equation.y = b dot x = b_0 + b_1*x_1 + b_2*x_2.
- See also
statmaster.sdu.dk/courses/st111/module03/index.html > runMain scalation.analytics.Regression_WLSTest
-
object
RidgeRegression extends ModelFactory
The
RidgeRegression
companion object defines hyper-paramters and provides factory functions for theRidgeRegression
class. -
object
RidgeRegressionTest extends App
The
RidgeRegressionTest
object testsRidgeRegression
class using the following regression equation.The
RidgeRegressionTest
object testsRidgeRegression
class using the following regression equation.y = b dot x = b_1*x_1 + b_2*x_2.
It compares
RidgeRegression
withRegression
- See also
http://statmaster.sdu.dk/courses/st111/module03/index.html > runMain scalation.analytics.RidgeRegressionTest
-
object
RidgeRegressionTest2 extends App
The
RidgeRegressionTest2
object testsRidgeRegression
class using the following regression equation.The
RidgeRegressionTest2
object testsRidgeRegression
class using the following regression equation.y = b dot x = b_1*x1 + b_2*x_2.
Try non-default value for the 'lambda' hyper-parameter. > runMain scalation.analytics.RidgeRegressionTest2
-
object
RidgeRegressionTest3 extends App
The
RidgeRegressionTest3
object testsRidgeRegression
class using the following regression equation.The
RidgeRegressionTest3
object testsRidgeRegression
class using the following regression equation.y = b dot x = b_1*x1 + b_2*x_2.
Test regression, forward selection and backward elimination. > runMain scalation.analytics.RidgeRegressionTest3
-
object
RidgeRegressionTest4 extends App
The
RidgeRegressionTest4
object testsRidgeRegression
class using the following regression equation.The
RidgeRegressionTest4
object testsRidgeRegression
class using the following regression equation.y = b dot x = b_1*x1 + b_2*x_2.
> runMain scalation.analytics.RidgeRegressionTest4
-
object
RidgeRegressionTest5 extends App
The
RidgeRegressionTest5
object tests the multi-collinearity method in theRidgeRegression
class using the following regression equation.The
RidgeRegressionTest5
object tests the multi-collinearity method in theRidgeRegression
class using the following regression equation.y = b dot x = b_1*x_1 + b_2*x_2 + b_3*x_3 + b_4 * x_4
- See also
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt > runMain scalation.analytics.RidgeRegressionTest5
-
object
RidgeRegressionTest6 extends App
The
RidgeRegressionTest6
object tests theRidgeRegression
class using the AutoMPG dataset.The
RidgeRegressionTest6
object tests theRidgeRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.RidgeRegressionTest6 -
object
RidgeRegressionTest7 extends App
The
RidgeRegressionTest7
object tests theRidgeRegression
class using the AutoMPG dataset.The
RidgeRegressionTest7
object tests theRidgeRegression
class using the AutoMPG dataset. It illustrates using theRelation
class for reading the data from a .csv file "auto-mpg.csv". Assumes no missing values. It also uses the 'findLambda' method to search for a shrinkage parameter that roughly mininizes 'sse_cv'. > runMain scalation.analytics.RidgeRegressionTest7 -
object
RoundRegression
The
RoundRegression
companion object provides a factory method. -
object
RoundRegressionTest extends App
The
RoundRegressionTest
object testsRoundRegression
class using the following regression equation.The
RoundRegressionTest
object testsRoundRegression
class using the following regression equation.y = round (b dot x) = round (b_0 + b_1*x_1 + b_2*x_2).
> runMain scalation.analytics.RoundRegressionTest
-
object
SimpleExpRegression extends ModelFactory
The
SimpleExpRegression
companion object provides factory apply functions and a testing method. -
object
SimpleExpRegressionTest extends App
The
SimpleExpRegressionTest
object testsSimpleExpRegression
class using the following exponential regression problem.The
SimpleExpRegressionTest
object testsSimpleExpRegression
class using the following exponential regression problem. > runMain scalation.analytics.SimpleExpRegressionTest -
object
SimpleExpRegressionTest2 extends App
The
SimpleExpRegressionTest2
object has a basic test for theSimpleExpRegression
class.The
SimpleExpRegressionTest2
object has a basic test for theSimpleExpRegression
class. > runMain scalation.analytics.SimpleExpRegressionTest2 -
object
SimpleExpRegressionTest3 extends App
The
SimpleExpRegressionTest3
object has a basic test for theSimpleExpRegression
class.The
SimpleExpRegressionTest3
object has a basic test for theSimpleExpRegression
class.- See also
http://www.cnachtsheim-text.csom.umn.edu/kut86916_ch13.pdf y = 58.6065 exp (-.03959 x) + e > runMain scalation.analytics.SimpleExpRegressionTest3
-
object
SimpleRegression extends ModelFactory
The
SimpleRegression
companion object provides a simple factory method for building simple regression linear regression models. -
object
SimpleRegressionTest extends App
The
SimpleRegressionTest
object to test theSimpleRegression
class.The
SimpleRegressionTest
object to test theSimpleRegression
class.y = b0 + b1 * x
> runMain scalation.analytics.SimpleRegressionTest
-
object
SimpleRegressionTest2 extends App
The
SimpleRegressionTest2
object to test theSimpleRegression
class.The
SimpleRegressionTest2
object to test theSimpleRegression
class.y = b0 + b1 * x
> runMain scalation.analytics.SimpleRegressionTest2
-
object
SimpleRegressionTest3 extends App
The
SimpleRegressionTest3
object is used to test theSimpleRegression
class.The
SimpleRegressionTest3
object is used to test theSimpleRegression
class.y = b dot x = [b0, b1] dot [1, x1]
- See also
http://www.analyzemath.com/statistics/linear_regression.html > runMain scalation.analytics.SimpleRegressionTest3
-
object
SimpleRegressionTest4 extends App
The
SimpleRegressionTest4
object is used to test theSimpleRegression
class.The
SimpleRegressionTest4
object is used to test theSimpleRegression
class.y = b dot x = b0 + b1 * x1
- See also
http://mathbits.com/mathbits/tisection/Statistics2/linear.htm > runMain scalation.analytics.SimpleRegressionTest4
-
object
SimpleRegressionTest5 extends App
The
SimpleRegressionTest5
object is used to test theSimpleRegression
class.The
SimpleRegressionTest5
object is used to test theSimpleRegression
class.y = b dot x = b0 + b1 * x1
This version uses gradient descent to search for the optimal solution for b. > runMain scalation.analytics.SimpleRegressionTest5
-
object
SimpleRegressionTest6 extends App
The
SimpleRegressionTest6
object is used to test theSimpleRegression
class.The
SimpleRegressionTest6
object is used to test theSimpleRegression
class.y = b dot x = b0 + b1 * x1
This version does Exploratory Data Analysis (EDA) on the AutoMPG dataset. > runMain scalation.analytics.SimpleRegressionTest6
-
object
SimplerRegression extends Error
The
SimplerRegression
companion object provides a simple factory method for building simple regression linear regression models. -
object
SimplerRegressionTest extends App
The
SimplerRegressionTest
object is used to test theSimplerRegression
class.The
SimplerRegressionTest
object is used to test theSimplerRegression
class.y = b0 * x + e
> runMain scalation.analytics.SimplerRegressionTest
-
object
SimplerRegressionTest2 extends App
The
SimplerRegressionTest2
object is used to test theSimplerRegression
class.The
SimplerRegressionTest2
object is used to test theSimplerRegression
class.y = b dot x + e = [b0] dot [x0] + e
> runMain scalation.analytics.SimplerRegressionTest2
-
object
SimplerRegressionTest3 extends App
The
SimplerRegressionTest3
object is used to test theSimplerRegression
class.The
SimplerRegressionTest3
object is used to test theSimplerRegression
class.y = b dot x + e = [b0] dot [x0] + e
> runMain scalation.analytics.SimplerRegressionTest3
-
object
SimplerRegressionTest4 extends App
The
SimplerRegressionTest4
object is used to test theSimplerRegression
class.The
SimplerRegressionTest4
object is used to test theSimplerRegression
class.y = b dot x = b0 * x0
- See also
http://mathbits.com/mathbits/tisection/Statistics2/linear.htm > runMain scalation.analytics.SimplerRegressionTest4
-
object
SumQueueTest extends App
The
SumQueueTest
object is used to test theSumQueue
class.The
SumQueueTest
object is used to test theSumQueue
class. > runMain scalation.analytics.SumQueueTest -
object
SumQueueTest2 extends App
The
SumQueueTest2
object is used to test theSumSqQueue
class.The
SumQueueTest2
object is used to test theSumSqQueue
class. > runMain scalation.analytics.SumQueueTest2 -
object
TranRegression extends ModelFactory
The
TranRegression
companion object provides transformation and inverse transformation function based on the parameter 'lambda'.The
TranRegression
companion object provides transformation and inverse transformation function based on the parameter 'lambda'. It support the family of Box-Cox transformations. Note, 'rescale' is defined inModelFactory
in Model.scala. -
object
TranRegressionEx
The
TranRegressionEx
provides a sample dataset for testing purposes.The
TranRegressionEx
provides a sample dataset for testing purposes. Move the comments on the line used to generate the response 'y(k)' to test 1D and 2D cases. -
object
TranRegressionTest extends App
The
TranRegressionTest
object testsTranRegression
class using the following regression equation.The
TranRegressionTest
object testsTranRegression
class using the following regression equation.log (y) = b dot x = b_0 + b_1*x_1 + b_2*x_2.
> runMain scalation.analytics.TranRegressionTest
-
object
TranRegressionTest2 extends App
The
TranRegressionTest2
object testsTranRegression
class using the following regression equation.The
TranRegressionTest2
object testsTranRegression
class using the following regression equation.sqrt (y) = b dot x = b_0 + b_1*x_1 + b_2*x_2.
> runMain scalation.analytics.TranRegressionTest2
-
object
TranRegressionTest3 extends App
The
TranRegressionTest3
object testsTranRegression
class using the following regression equation.The
TranRegressionTest3
object testsTranRegression
class using the following regression equation.sqrt (y) = b dot x = b_0 + b_1*x_1 + b_2*x_2.
> runMain scalation.analytics.TranRegressionTest3
-
object
TranRegressionTest4 extends App
The
TranRegressionTest4
object testsTranRegression
class using the following regression equation.The
TranRegressionTest4
object testsTranRegression
class using the following regression equation.sqrt (y) = b dot x = b_0 + b_1*x_1 + b_2*x_2.
> runMain scalation.analytics.TranRegressionTest4
-
object
TranRegressionTest5 extends App
The
TranRegressionTest5
object testsTranRegression
class using the following regression equation.The
TranRegressionTest5
object testsTranRegression
class using the following regression equation.sqrt (y) = b dot x = b_0 + b_1*x_1 + b_2*x_2.
> runMain scalation.analytics.TranRegressionTest5
-
object
TranRegressionTest6 extends App
The
TranRegressionTest6
object testsTranRegression
class using the following regression equation on the beer foam dataset.The
TranRegressionTest6
object testsTranRegression
class using the following regression equation on the beer foam dataset.- See also
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_2/articles/beer_article.pdf exp (y) = b dot x = b_0 + b_1*x_1. > runMain scalation.analytics.TranRegressionTest6
-
object
TranRegressionTest7 extends App
The
TranRegressionTest7
object tests theTranRegression
class using the AutoMPG dataset.The
TranRegressionTest7
object tests theTranRegression
class using the AutoMPG dataset. It also combines feature selection with cross-validation and plots R2, R2 bar and R^2 cv vs. the instance index. > runMain scalation.analytics.TranRegressionTest7 -
object
TranRegressionTest8 extends App
The
TranRegressionTest8
object comparesRegression
vs.The
TranRegressionTest8
object comparesRegression
vs.QuadRegression
vs. TranRegression. using the following regression equations.y = b dot x = b_0 + b_1*x y = b dot x' = b_0 + b_1*x + b_2*x2 y = b dot x' = b_0 + b_1*x + b_2*x2 + b_3*x^3
> runMain scalation.analytics.TranRegressionTest8
-
object
TrigRegression extends ModelFactory
The
TrigRegression
companion object provides factory functions and functions for creating functional forms. -
object
TrigRegressionTest extends App
The
TrigRegressionTest
object testsTrigRegression
class using the following regression equation.The
TrigRegressionTest
object testsTrigRegression
class using the following regression equation.y = b dot x = b_0 + b_1 sin wt + b_2 cos wt + ... b_2k-1 sin kwt + b_2k cos kwt + e
The data is generated from a noisy cubic function. > runMain scalation.analytics.TrigRegressionTest
-
object
TrigRegressionTest2 extends App
The
TrigRegressionTest2
object testsTrigRegression
class using the following regression equation.The
TrigRegressionTest2
object testsTrigRegression
class using the following regression equation.y = b dot x = b_0 + b_1 sin wt + b_2 cos wt + ... b_2k-1 sin kwt + b_2k cos kwt + e
The data is generated from periodic noisy cubic functions. > runMain scalation.analytics.TrigRegressionTest2
-
object
Variable extends Error with Serializable
The
Variable
object provides utilities for variables. -
object
VariableKind extends Enumeration
The
VariableKind
object indicates the kind of variable. -
object
VariableTest extends App
The
VariableTest
the conversion of a categorical variable into multiple dummy variables.The
VariableTest
the conversion of a categorical variable into multiple dummy variables. > runMain scalation.analytics.VariableTest