object StatVector
The StatVector
companion object extends statistics vector operations to matrices
and convenience functions on vectors.
- Alphabetic
- By Inheritance
- StatVector
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
acorr(y: VectoD): Double
Compute the '1'-lag auto-correlation of 'self' vector.
Compute the '1'-lag auto-correlation of 'self' vector. Assumes a stationary vector, if not its an approximation.
- y
the vector whose auto-correlation is sought
-
def
acorrz(z: VectoD): Double
Compute the '1'-lag auto-correlation of 'self' vector.
Compute the '1'-lag auto-correlation of 'self' vector. Assumes a zero-centered, stationary vector, if not its an approximation.
- z
the zero-centered vector whose auto-correlation is sought
-
def
acov(y: VectoD): Double
Compute the '1'-lag auto-covariance of 'self' vector.
Compute the '1'-lag auto-covariance of 'self' vector.
- y
the vector whose auto-covariance is sought
-
def
acovz(z: VectoD): Double
Compute the '1'-lag auto-covariance of 'self' vector.
Compute the '1'-lag auto-covariance of 'self' vector.
- z
the zero-centered vector whose auto-covariance is sought
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
center(x: MatriD, mu_x: VectoD): MatriD
Center the input matrix 'x' to zero mean, column-wise, by subtracting the mean.
Center the input matrix 'x' to zero mean, column-wise, by subtracting the mean.
- x
the input matrix to center
- mu_x
the vector of column means of matrix x
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
corr(x: MatriD): MatriD
Return the correlation matrix for the columns of matrix 'x'.
Return the correlation matrix for the columns of matrix 'x'. If either variance is zero (column i, column j), will result in Not-a-Number (NaN), return one if the vectors are the same, or -0 (indicating undefined). Note: sample vs. population results in essentailly the same values.
- x
the matrix whose column-column correlations are sought
- See also
the related 'cos' function.
-
def
corrMat(y: VectoD): MatriD
Return the first-order auto-regressive correlation matrix for vector (e.g., time series) 'y'.
Return the first-order auto-regressive correlation matrix for vector (e.g., time series) 'y'.
- y
the vector whose auto-regressive correlation matrix is sought
- See also
halweb.uc3m.es/esp/Personal/personas/durban/esp/web/notes/gls.pdf
-
def
cos(x: MatriD): MatriD
Return the cosine similarity matrix for the columns of matrix 'x'.
Return the cosine similarity matrix for the columns of matrix 'x'. If the vectors are centered, will give the correlation.
- x
the matrix whose column-column cosines are sought
- See also
stats.stackexchange.com/questions/97051/building-the-connection-between-cosine-similarity-and-correlation-in-r
-
def
cov(x: MatriD): MatriD
Return the sample covariance matrix for the columns of matrix 'x'.
Return the sample covariance matrix for the columns of matrix 'x'.
- x
the matrix whose column covariances are sought
-
def
covMat(y: VectoD): MatriD
Return the first-order auto-regressive covariance matrix for vector (e.g., time series) 'y'.
Return the first-order auto-regressive covariance matrix for vector (e.g., time series) 'y'.
- y
the vector whose auto-regressive covariance matrix is sought
- See also
halweb.uc3m.es/esp/Personal/personas/durban/esp/web/notes/gls.pdf
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
pcov(x: MatriD): MatriD
Return the population covariance matrix for the columns of matrix 'x'.
Return the population covariance matrix for the columns of matrix 'x'.
- x
the matrix whose column columns covariances are sought
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated