class T_Test1 extends AnyRef
The T_Test1
class is used to test whether a data sample 'x' comes from a
population with "known" mean 'μ0', by comparing the sample mean 'μ' with 'μ0',
using a (Two-Sided/Two-Tailed) One-Sample t-test.
Assumes the sample is drawn from a Normal distribution.
The error in the test is measured by the conditional probability 'p' that
a "difference is detected" when there "actually is none".
p = P(different | μ = μ0)
The power of the test is the ability to detect actual differences. '1 - power' is measured by the conditional probability 'p2' that a "difference is not detected" when there "actually is one".
p2 = P(! different | μ ≠ μ0)
These are called Type I (measured by p) and Type II (measured by p2) errors.
- See also
en.wikipedia.org/wiki/Type_I_and_type_II_errors ----------------------------------------------------------------------------- H0: μ = μ0 Null Hypothesis H1: μ ≠ μ0 Alternative Hypothesis (Two-Sided) -----------------------------------------------------------------------------
- Alphabetic
- By Inheritance
- T_Test1
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
T_Test1(x: VectorD, μ0: Double)
- x
the sample's vector of data
- μ0
the "known" population mean
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
p(t: Double, df: Int): Double
Compute the probability of a Type I Error using the Student's t distribution.
Compute the probability of a Type I Error using the Student's t distribution.
- t
the value of the Student's t statistic
- df
the effective degrees of freedom
- See also
scalation.random.CDF.studentTCDF Mistake probability: in rejecting the null hypothesis.
-
def
p2(t: Double, df: Int, α: Double = 0.05): Double
Compute the probability of a Type II Error using the Student's t distribution.
Compute the probability of a Type II Error using the Student's t distribution. Mistake probability: in not rejecting the null hypothesis.
- t
the value of the Student's t statistic
- df
the effective degrees of freedom
- α
the desired sigificance level
- See also
statweb.stanford.edu/~susan/courses/s141/hopower.pdf
-
def
se(n: Int): Double
Compute the standard error for mean difference.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
t(se: Double): Double
Compute the Student's t statistic.
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated