case class Normal(mu: Double = 0.0, sigma2: Double = 1.0, stream: Int = 0) extends Variate with Product with Serializable
This class generates Normal
(Gaussian) random variates.
This continuous RV models normally distributed data (bell curve).
When summed, most distributions tend to Normal (Central Limit Theorem).
- mu
the mean
- sigma2
the variance (sigma squared)
- stream
the random number stream
- See also
http://www.math.uah.edu/stat/special/Normal.html
- Alphabetic
- By Inheritance
- Normal
- Serializable
- Serializable
- Product
- Equals
- Variate
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Normal(mu: Double = 0.0, sigma2: Double = 1.0, stream: Int = 0)
- mu
the mean
- sigma2
the variance (sigma squared)
- stream
the random number stream
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
var
_discrete: Boolean
Indicates whether the distribution is discrete or continuous (default)
Indicates whether the distribution is discrete or continuous (default)
- Attributes
- protected
- Definition Classes
- Variate
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
discrete: Boolean
Determine whether the distribution is discrete or continuous.
Determine whether the distribution is discrete or continuous.
- Definition Classes
- Variate
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
-
def
gen: Double
Determine the next random number for the particular distribution.
- def gen2: Double
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
igen: Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates.
- Definition Classes
- Variate
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val mean: Double
- val mu: Double
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
pf(z: Double): Double
Compute the probability function (pf): Either (a) the probability density function (pdf) for continuous RV's or (b) the probability mass function (pmf) for discrete RV's.
-
def
pmf(k: Int = 0): Array[Double]
Return the entire probability mass function (pmf) for finite discrete RV's.
Return the entire probability mass function (pmf) for finite discrete RV's.
- k
number of objects of the first type
- Definition Classes
- Variate
-
val
r: Random
Random number stream selected by the stream number
Random number stream selected by the stream number
- Attributes
- protected
- Definition Classes
- Variate
-
def
sgen: String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method.
- Definition Classes
- Variate
- val sigma2: Double
- val stream: Int
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )