case class NormalVec(mu: VectorD, cov: MatrixD, stream: Int = 0) extends VariateVec with Product with Serializable
The NormalVec
class generates Normal (Gaussian) random variate vectors according
to the Multivariate Normal distribution with mean 'mu' and covariance 'cov'.
This continuous RVV models normally distributed multidimensional data.
- mu
the mean vector
- cov
the covariance matrix
- stream
the random number stream
- See also
http://www.statlect.com/mcdnrm1.htm
http://onlinelibrary.wiley.com/doi/10.1111/1467-9639.00037/pdf
- Alphabetic
- By Inheritance
- NormalVec
- Serializable
- Serializable
- Product
- Equals
- VariateVec
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
var
_discrete: Boolean
Indicates whether the distribution is discrete or continuous (default)
Indicates whether the distribution is discrete or continuous (default)
- Attributes
- protected
- Definition Classes
- VariateVec
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- val cov: MatrixD
-
def
discrete: Boolean
Determine whether the distribution is discrete or continuous.
Determine whether the distribution is discrete or continuous.
- Definition Classes
- VariateVec
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
-
def
gen: VectorD
Determine the next random double vector for the particular distribution.
Determine the next random double vector for the particular distribution.
- Definition Classes
- NormalVec → VariateVec
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
igen: VectorI
Determine the next random integer vector for the particular distribution.
Determine the next random integer vector for the particular distribution. It is only valid for discrete random variates.
- Definition Classes
- NormalVec → VariateVec
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
mean: VectorD
Compute the vector mean for the particular distribution.
Compute the vector mean for the particular distribution.
- Definition Classes
- NormalVec → VariateVec
- val mu: VectorD
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
pf(z: VectorD): Double
Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.
Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.
- z
the mass point/vector whose probability is sought
- Definition Classes
- NormalVec → VariateVec
-
val
r: Random
Random number stream selected by the stream number
Random number stream selected by the stream number
- Attributes
- protected
- Definition Classes
- VariateVec
- val stream: Int
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )