Packages

c

scalation.random

RandomVecD

case class RandomVecD(dim: Int = 10, max: Double = 20.0, min: Double = 0.0, density: Double = 1.0, runLength: Int = 10, stream: Int = 0) extends VariateVec with Product with Serializable

The RandomVecD class generates a random vector of doubles. Ex: (3.0, 2.0, 0.0, 4.0, 1.0) has 'dim' = 5 and 'max' = 4.

dim

the dimension/size of the vector (number of elements)

max

generate integers in the range min (inclusive) to max (inclusive)

min

generate integers in the range min (inclusive) to max (inclusive)

density

sparsity basis = 1 - density

runLength

the maximum run length

stream

the random number stream

Linear Supertypes
Serializable, Serializable, Product, Equals, VariateVec, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RandomVecD
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. VariateVec
  7. Error
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RandomVecD(dim: Int = 10, max: Double = 20.0, min: Double = 0.0, density: Double = 1.0, runLength: Int = 10, stream: Int = 0)

    dim

    the dimension/size of the vector (number of elements)

    max

    generate integers in the range min (inclusive) to max (inclusive)

    min

    generate integers in the range min (inclusive) to max (inclusive)

    density

    sparsity basis = 1 - density

    runLength

    the maximum run length

    stream

    the random number stream

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. var _discrete: Boolean

    Indicates whether the distribution is discrete or continuous (default)

    Indicates whether the distribution is discrete or continuous (default)

    Attributes
    protected
    Definition Classes
    VariateVec
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. val density: Double
  8. val dim: Int
  9. def discrete: Boolean

    Determine whether the distribution is discrete or continuous.

    Determine whether the distribution is discrete or continuous.

    Definition Classes
    VariateVec
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  13. def gen: VectorD

    Determine the next random double vector for the particular distribution.

    Determine the next random double vector for the particular distribution.

    Definition Classes
    RandomVecDVariateVec
  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  15. def igen: VectorI

    Determine the next random integer vector for the particular distribution.

    Determine the next random integer vector for the particular distribution. It is only valid for discrete random variates.

    Definition Classes
    RandomVecDVariateVec
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. val max: Double
  18. def mean: VectorD

    Compute the vector mean for the particular distribution.

    Compute the vector mean for the particular distribution.

    Definition Classes
    RandomVecDVariateVec
  19. val min: Double
  20. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. final def notify(): Unit
    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  23. def pf(z: VectorD): Double

    Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.

    Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.

    z

    the mass point/vector whose probability is sought

    Definition Classes
    RandomVecDVariateVec
  24. val r: Random

    Random number stream selected by the stream number

    Random number stream selected by the stream number

    Attributes
    protected
    Definition Classes
    VariateVec
  25. def repgen: VectorD
  26. val runLength: Int
  27. val stream: Int
  28. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  29. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from VariateVec

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped