object GLM extends GLM
The GLM
object makes the GLM
trait's methods directly available.
This approach (using traits and objects) allows the methods to also be inherited.
- Alphabetic
- By Inheritance
- GLM
- GLM
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
add_1: Boolean
- Attributes
- protected
- Definition Classes
- GLM
-
def
apply(x_: MatrixD, t: VectorI, y: VectorD, levels: Int): ANCOVA
Build an ANalysis of COVAriance (ANCOVA) model.
Build an ANalysis of COVAriance (ANCOVA) model.
- x_
the data/design matrix of continuous variables
- t
the treatment/categorical variable vector
- y
the response vector
- levels
the number of treatment levels (1, ... levels)
- Definition Classes
- GLM
-
def
apply(x_: MatrixD, y: VectorD, cubic: Boolean): ResponseSurface
Build a Response Surface model.
Build a Response Surface model.
- x_
the input vectors/points
- y
the response vector
- cubic
the order of the surface (false for quadratic, true for cubic)
- Definition Classes
- GLM
-
def
apply(ty: MatrixD, k: Int, w: Double): TrigRegression
Build a Trigonometric Regression model.
Build a Trigonometric Regression model.
- ty
the combined input vector and response vector
- k
the maximum multiplier in the trig function 'kwt'
- w
the base displacement angle in radians
- Definition Classes
- GLM
-
def
apply(t: VectorD, y: VectorD, k: Int, w: Double): TrigRegression
Build a Trigonometric Regression model.
Build a Trigonometric Regression model. It makes a matrix using 'expand'.
- t
the input vector: t_i expands to x_i
- y
the response vector
- k
the maximum multiplier in the trig function 'kwt'
- w
the base displacement angle in radians
- Definition Classes
- GLM
-
def
apply(ty: MatrixD, k: Int): PolyRegression
Build a Polynomial Regression model.
Build a Polynomial Regression model.
- ty
the combined input vector and response vector
- k
the order of the polynomial
- Definition Classes
- GLM
-
def
apply(t: VectorD, y: VectorD, k: Int): PolyRegression
Build a Polynomial Regression model.
Build a Polynomial Regression model. It makes a matrix using 'expand'.
- t
the input vector: t_i expands to x_i = [1, t_i, t_i2, ... t_ik]
- y
the response vector
- k
the order of the polynomial
- Definition Classes
- GLM
-
def
apply(xy: MatrixD, transform: FunctionS2S): TranRegression
Build a Transformed Multiple Linear Regression model.
Build a Transformed Multiple Linear Regression model.
- xy
the combined input/design m-by-n matrix and response m-vector
- transform
the transformation function
- Definition Classes
- GLM
-
def
apply(x: MatrixD, y: VectorD, transform: FunctionS2S): TranRegression
Build a Transformed Multiple Linear Regression model.
Build a Transformed Multiple Linear Regression model.
- x
the input/design m-by-n matrix
- y
the response m-vector
- transform
the transformation function (e.g., log)
- Definition Classes
- GLM
-
def
apply(xy: MatrixD, lambda: Double): RidgeRegression
Build a Multiple Linear Robust Regression model.
Build a Multiple Linear Robust Regression model.
- lambda
the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'
- Definition Classes
- GLM
-
def
apply(x: MatrixD, y: VectorD, lambda: Double): RidgeRegression
Build a Multiple Linear Robust Regression model.
Build a Multiple Linear Robust Regression model.
- x
the centered input/design m-by-n matrix NOT augmented with a first column of ones
- y
the centered response vector
- lambda
the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'
- Definition Classes
- GLM
-
def
apply(xy: MatrixD): Regression
Build a Multiple Linear Regression model.
Build a Multiple Linear Regression model.
- xy
the combined input/design m-by-n matrix and response m-vector
- Definition Classes
- GLM
-
def
apply(x: MatrixD, y: VectorD): Regression
Build a Multiple Linear Regression model.
Build a Multiple Linear Regression model.
- x
the input/design m-by-n matrix
- y
the response m-vector
- Definition Classes
- GLM
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
setAdd_1(_add_1: Boolean = true): Unit
Explicitly set the add_1 flag (column of all ones corresponding to b_0).
Explicitly set the add_1 flag (column of all ones corresponding to b_0).
- _add_1
the value to set the add_1 flag to
- Definition Classes
- GLM
-
def
setTechnique(_technique: RegTechnique = QR): Unit
Explicitly set the regression technique to use.
Explicitly set the regression technique to use.
- _technique
the value to set technique to
- Definition Classes
- GLM
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
technique: RegTechnique.Value
- Attributes
- protected
- Definition Classes
- GLM
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )