class ResponseSurface extends Predictor with Error
The ResponseSurface
class uses multiple regression to fit a quadratic/cubic
surface to the data. For example in 2D, the quadratic regression equation is
y = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_1, x_0*x_1, x_12] + e
- See also
scalation.metamodel.QuadraticFit
- Alphabetic
- By Inheritance
- ResponseSurface
- Error
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ResponseSurface(x_: MatrixD, y: VectorD, cubic: Boolean = false, technique: RegTechnique = QR)
- x_
the input vectors/points
- y
the response vector
- cubic
the order of the surface (defaults to quadratic, else cubic)
- technique
the technique used to solve for b in x.t*x*b = x.t*y
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
allForms(): MatrixD
Create all forms/terms for each point placing them in a new matrix.
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
backElim(): (Int, VectoD, VectoD)
Perform backward elimination to remove the least predictive variable from the model, returning the variable to eliminate, the new parameter vector, the new quality of fit.
-
def
cForms(p: VectorD): VectorD
Given a vector/point 'p', compute the values for all of its cubic, quadratic, linear and constant forms/terms, returning them as a vector.
Given a vector/point 'p', compute the values for all of its cubic, quadratic, linear and constant forms/terms, returning them as a vector. for 1D: p = (x_0) => VectorD (1, x_0, x_02, x_03) for 2D: p = (x_0, x_1) => VectorD (1, x_0, x_02, x_03, x_0*x_1, x_02*x_1, x_0*x_12, x_1, x_12, x_13)
- p
the source vector/point for creating forms/terms
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
coefficient: VectoD
Return the vector of coefficient/parameter values.
Return the vector of coefficient/parameter values.
- Definition Classes
- Predictor
-
def
diagnose(yy: VectoD): Unit
Compute diagostics for the predictor.
Compute diagostics for the predictor. Override to add more diagostics. Note, for 'rmse', 'sse' is divided by the number of instances 'm' rather than degrees of freedom.
- yy
the response vector
- Definition Classes
- Predictor
- See also
en.wikipedia.org/wiki/Mean_squared_error
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit including 'rSquared'.
Return the quality of fit including 'rSquared'.
- Definition Classes
- ResponseSurface → Predictor
-
def
fitLabels: Seq[String]
Return the labels for the fit.
Return the labels for the fit. Override when necessary.
- Definition Classes
- Predictor
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
mae: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
predict(z: VectoD): Double
Given a point z, use the quadratic 'rsm' regression equation to predict a value for the function at z.
Given a point z, use the quadratic 'rsm' regression equation to predict a value for the function at z. for 1D: b_0 + b_1*z_0 + b_2*z_02 for 2D: b_0 + b_1*z_0 + b_2*z_02 + b_3*z_1 + b_4*z_1*z_0 + b_5*z_1^2
- z
the point/vector whose functional value is to be predicted
- Definition Classes
- ResponseSurface → Predictor
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
qForms(p: VectorD): VectorD
Given a vector/point 'p', compute the values for all of its quadratic, linear and constant forms/terms, returning them as a vector.
Given a vector/point 'p', compute the values for all of its quadratic, linear and constant forms/terms, returning them as a vector. for 1D: p = (x_0) => VectorD (1, x_0, x_02) for 2D: p = (x_0, x_1) => VectorD (1, x_0, x_02, x_0*x_1, x_1, x_1^2)
- p
the source vector/point for creating forms/terms
-
val
rSq: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- Predictor
-
val
rmse: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
sse: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
ssr: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
sst: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(yy: VectoD): Unit
Retrain the predictor by fitting the parameter vector (b-vector) in the quadratic 'rsm' regression equation, e.g., for 2D yy = b dot x + e = [b_0, ...
Retrain the predictor by fitting the parameter vector (b-vector) in the quadratic 'rsm' regression equation, e.g., for 2D yy = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_1, x_1*x_0, x_12] + e using the least squares method.
- yy
the new response vector
- Definition Classes
- ResponseSurface → Predictor
-
def
train(): Unit
Train the predictor by fitting the parameter vector (b-vector) in the quadratic 'rsm' regression equation, e.g., for 2D y = b dot x + e = [b_0, ...
Train the predictor by fitting the parameter vector (b-vector) in the quadratic 'rsm' regression equation, e.g., for 2D y = b dot x + e = [b_0, ... b_k] dot [1, x_0, x_02, x_1, x_1*x_0, x_12] + e using the least squares method.
- Definition Classes
- ResponseSurface → Predictor
-
def
vif: VectorD
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables.
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'xj' can be predicted from the other variables, so 'xj' is a candidate for removal from the model.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )