Packages

trait GLM extends AnyRef

A General Linear Model 'GLM' can be developed using the GLM trait and object (see below). The implementation currently supports univariate models with multivariate models (where each response is a vector) planned for the future. This version uses parallel processing to speed up execution. It provides factory methods for the following special types of GLMs: Regression - multiple linear regression, RidgeRegression - robust multiple linear regression, TranRegression - transformed (e.g., log) multiple linear regression, PolyRegression - polynomial regression, TrigRegression - trigonometric regression ResponseSurface - response surface regression, ANCOVA - GLM form of ANalysis of COVAriance. The following special types are excluded since they do not utilize large matrices. SimpleRegression - simple linear regression, ANOVA - GLM form of ANalysis Of VAriance,

Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GLM
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val add_1: Boolean
    Attributes
    protected
  5. def apply(x_: MatrixD, t: VectorI, y: VectorD, levels: Int): ANCOVA

    Build an ANalysis of COVAriance (ANCOVA) model.

    Build an ANalysis of COVAriance (ANCOVA) model.

    x_

    the data/design matrix of continuous variables

    t

    the treatment/categorical variable vector

    y

    the response vector

    levels

    the number of treatment levels (1, ... levels)

  6. def apply(x_: MatrixD, y: VectorD, cubic: Boolean): ResponseSurface

    Build a Response Surface model.

    Build a Response Surface model.

    x_

    the input vectors/points

    y

    the response vector

    cubic

    the order of the surface (false for quadratic, true for cubic)

  7. def apply(ty: MatrixD, k: Int, w: Double): TrigRegression

    Build a Trigonometric Regression model.

    Build a Trigonometric Regression model.

    ty

    the combined input vector and response vector

    k

    the maximum multiplier in the trig function 'kwt'

    w

    the base displacement angle in radians

  8. def apply(t: VectorD, y: VectorD, k: Int, w: Double): TrigRegression

    Build a Trigonometric Regression model.

    Build a Trigonometric Regression model. It makes a matrix using 'expand'.

    t

    the input vector: t_i expands to x_i

    y

    the response vector

    k

    the maximum multiplier in the trig function 'kwt'

    w

    the base displacement angle in radians

  9. def apply(ty: MatrixD, k: Int): PolyRegression

    Build a Polynomial Regression model.

    Build a Polynomial Regression model.

    ty

    the combined input vector and response vector

    k

    the order of the polynomial

  10. def apply(t: VectorD, y: VectorD, k: Int): PolyRegression

    Build a Polynomial Regression model.

    Build a Polynomial Regression model. It makes a matrix using 'expand'.

    t

    the input vector: t_i expands to x_i = [1, t_i, t_i2, ... t_ik]

    y

    the response vector

    k

    the order of the polynomial

  11. def apply(xy: MatrixD, transform: FunctionS2S): TranRegression

    Build a Transformed Multiple Linear Regression model.

    Build a Transformed Multiple Linear Regression model.

    xy

    the combined input/design m-by-n matrix and response m-vector

    transform

    the transformation function

  12. def apply(x: MatrixD, y: VectorD, transform: FunctionS2S): TranRegression

    Build a Transformed Multiple Linear Regression model.

    Build a Transformed Multiple Linear Regression model.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

    transform

    the transformation function (e.g., log)

  13. def apply(xy: MatrixD, lambda: Double): RidgeRegression

    Build a Multiple Linear Robust Regression model.

    Build a Multiple Linear Robust Regression model.

    lambda

    the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'

  14. def apply(x: MatrixD, y: VectorD, lambda: Double): RidgeRegression

    Build a Multiple Linear Robust Regression model.

    Build a Multiple Linear Robust Regression model.

    x

    the centered input/design m-by-n matrix NOT augmented with a first column of ones

    y

    the centered response vector

    lambda

    the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'

  15. def apply(xy: MatrixD): Regression

    Build a Multiple Linear Regression model.

    Build a Multiple Linear Regression model.

    xy

    the combined input/design m-by-n matrix and response m-vector

  16. def apply(x: MatrixD, y: VectorD): Regression

    Build a Multiple Linear Regression model.

    Build a Multiple Linear Regression model.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

  17. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  18. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  20. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  21. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  23. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  24. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  25. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. final def notify(): Unit
    Definition Classes
    AnyRef
  27. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  28. def setAdd_1(_add_1: Boolean = true): Unit

    Explicitly set the add_1 flag (column of all ones corresponding to b_0).

    Explicitly set the add_1 flag (column of all ones corresponding to b_0).

    _add_1

    the value to set the add_1 flag to

  29. def setTechnique(_technique: RegTechnique = QR): Unit

    Explicitly set the regression technique to use.

    Explicitly set the regression technique to use.

    _technique

    the value to set technique to

  30. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  31. val technique: RegTechnique.Value
    Attributes
    protected
  32. def toString(): String
    Definition Classes
    AnyRef → Any
  33. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped