Packages

class RandomForest extends ClassifierReal

The RandomForest class uses randomness for building descision trees in classification. It randomly selects sub-samples with 'size = bR * sample-size' from the sample (with replacement) and uses the 'fS' number of sub-features to build the trees, and to classify by voting from all of the trees.

Linear Supertypes
ClassifierReal, Error, Classifier, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RandomForest
  2. ClassifierReal
  3. Error
  4. Classifier
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RandomForest(x: MatrixD, y: VectoI, nF: Int, bR: Double, fS: Int, k: Int, s: Int, fn: Array[String], cn: Array[String])

    x

    the data matrix (instances by features)

    y

    the response class labels of the instances

    nF

    the number of trees

    bR

    bagging ratio (the portion of samples used in building trees)

    fS

    the number of features used in building trees

    k

    the number of classes

    s

    seed for randomness

    fn

    feature names (array of string)

    cn

    class names (array of string)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def calcCorrelation: MatriD

    Calculate the correlation matrix for the feature vectors 'fea'.

    Calculate the correlation matrix for the feature vectors 'fea'. If the correlations are too high, the independence assumption may be dubious.

    Definition Classes
    ClassifierReal
  6. def calcCorrelation2(zrg: Range, xrg: Range): MatriD

    Calculate the correlation matrix for the feature vectors of Z (Level 3) and those of X (level 2).

    Calculate the correlation matrix for the feature vectors of Z (Level 3) and those of X (level 2). If the correlations are too high, the independence assumption may be dubious.

    zrg

    the range of Z-columns

    xrg

    the range of X-columns

    Definition Classes
    ClassifierReal
  7. def classify(z: VectoD): (Int, String, Double)

    Classify the vector 'z' by voting within randomized trees, returning the class index, class name and the probability (not used in Random Forest, always -1.0)

    Classify the vector 'z' by voting within randomized trees, returning the class index, class name and the probability (not used in Random Forest, always -1.0)

    z

    the vector to be classified

    Definition Classes
    RandomForestClassifier
  8. def classify(xx: MatriD): VectoI

    Classify all of the row vectors in matrix 'xx'.

    Classify all of the row vectors in matrix 'xx'.

    xx

    the row vectors to classify

    Definition Classes
    ClassifierReal
  9. def classify(z: VectoI): (Int, String, Double)

    Given a new discrete (integer-valued) data vector 'z', determine which class it belongs to, by first converting it to a vector of doubles.

    Given a new discrete (integer-valued) data vector 'z', determine which class it belongs to, by first converting it to a vector of doubles. Return the best class, its name and its relative probability

    z

    the vector to classify

    Definition Classes
    ClassifierRealClassifier
  10. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  11. val cn: Array[String]
  12. def createSubsample(): MatrixD

    Create a 'subSample' (size = baggingRatio * orginal sample size) from the samples, returning the 'subSample'.

  13. def crossValidate(nx: Int = 10, show: Boolean = false): Double

    Test the accuracy of the classified results by cross-validation, returning the accuracy.

    Test the accuracy of the classified results by cross-validation, returning the accuracy. The "test data" starts at 'testStart' and ends at 'testEnd', the rest of the data is "training data'. FIX - should return a StatVector

    nx

    the number of crosses and cross-validations (defaults to 10x).

    show

    the show flag (show result from each iteration)

    Definition Classes
    Classifier
  14. def crossValidateRand(nx: Int = 10, show: Boolean = false): Double

    Test the accuracy of the classified results by cross-validation, returning the accuracy.

    Test the accuracy of the classified results by cross-validation, returning the accuracy. This version of cross-validation relies on "subtracting" frequencies from the previously stored global data to achieve efficiency. FIX - are the comments correct? FIX - should return a StatVector

    nx

    number of crosses and cross-validations (defaults to 10x).

    show

    the show flag (show result from each iteration)

    Definition Classes
    Classifier
  15. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  17. def featureSelection(TOL: Double = 0.01): Unit

    Perform feature selection on the classifier.

    Perform feature selection on the classifier. Use backward elimination technique, that is, remove the least significant feature, in terms of cross- validation accuracy, in each round.

    TOL

    tolerance indicating negligible accuracy loss when removing features

    Definition Classes
    ClassifierReal
  18. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. def fit(y: VectoI, yp: VectoI, k: Int = 2): VectoD

    Return the quality of fit including 'acc', 'prec', 'recall', 'kappa'.

    Return the quality of fit including 'acc', 'prec', 'recall', 'kappa'. Override to add more quality of fit measures.

    y

    the actual class labels

    yp

    the precicted class labels

    k

    the number of class labels

    Definition Classes
    Classifier
    See also

    ConfusionMat

    medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

  20. def fitLabel: Seq[String]

    Return the labels for the fit.

    Return the labels for the fit. Override when necessary.

    Definition Classes
    Classifier
  21. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  22. val fn: Array[String]
  23. val fset: Array[Boolean]

    the set of features to turn on or off.

    the set of features to turn on or off. All features are on by default. Used for feature selection.

    Attributes
    protected
    Definition Classes
    ClassifierReal
  24. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  25. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  26. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  27. val m: Int

    the number of data vectors in training-set (# rows)

    the number of data vectors in training-set (# rows)

    Attributes
    protected
    Definition Classes
    ClassifierReal
  28. val md: Double

    the training-set size as a Double

    the training-set size as a Double

    Attributes
    protected
    Definition Classes
    ClassifierReal
  29. val n: Int

    the number of features/variables (# columns)

    the number of features/variables (# columns)

    Attributes
    protected
    Definition Classes
    ClassifierReal
  30. val nd: Double

    the feature-set size as a Double

    the feature-set size as a Double

    Attributes
    protected
    Definition Classes
    ClassifierReal
  31. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  32. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  33. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  34. def reset(): Unit

    Reset the frequency and probability tables (not used here).

    Reset the frequency and probability tables (not used here).

    Definition Classes
    RandomForestClassifier
  35. def selectSubFeatures(subSample: MatrixD): (MatrixD, VectoI)

    Select 'subFeatures' for input of building Trees, return the 'subFeatures' and the selected features 'index'.

    Select 'subFeatures' for input of building Trees, return the 'subFeatures' and the selected features 'index'.

    subSample

    the sub-sample to select from

  36. def size: Int

    Return the number of data vectors in training/test-set (# rows).

    Return the number of data vectors in training/test-set (# rows).

    Definition Classes
    ClassifierRealClassifier
  37. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  38. def test(xx: MatriD, yy: VectoI): Double

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    xx

    the real-valued test vectors stored as rows of a matrix

    yy

    the test classification vector, where 'yy_i = class for row i of xx'

    Definition Classes
    ClassifierReal
  39. def test(itest: IndexedSeq[Int]): Double

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    Test the quality of the training with a test-set and return the fraction of correct classifications.

    itest

    indices of the instances considered test data

    Definition Classes
    ClassifierRealClassifier
  40. def test(testStart: Int, testEnd: Int): Double

    Test the quality of the training with a test dataset and return the fraction of correct classifications.

    Test the quality of the training with a test dataset and return the fraction of correct classifications. Can be used when the dataset is randomized so that the testing/training part of a dataset corresponds to simple slices of vectors and matrices.

    testStart

    the beginning of test region (inclusive).

    testEnd

    the end of test region (exclusive).

    Definition Classes
    Classifier
  41. def toString(): String
    Definition Classes
    AnyRef → Any
  42. def train(itest: IndexedSeq[Int]): RandomForest

    Build the trees of Forest by first selecting the subSamples, then decide which features used in spliting, then build trees.

    Build the trees of Forest by first selecting the subSamples, then decide which features used in spliting, then build trees.

    itest

    the indices of the instances considered as testing data@param testStart the beginning of test region (inclusive).

    Definition Classes
    RandomForestClassifier
  43. def train(): Classifier

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. Must be implemented in any extending class. Can be used when the whole dataset is used for training.

    Definition Classes
    Classifier
  44. def train(testStart: Int, testEnd: Int): Classifier

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.

    Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. Must be implemented in any extending class. Can be used when the dataset is randomized so that the training part of a dataset corresponds to simple slices of vectors and matrices.

    testStart

    starting index of test region (inclusive) used in cross-validation

    testEnd

    ending index of test region (exclusive) used in cross-validation

    Definition Classes
    Classifier
  45. def vc_default: Array[Int]

    Return default values for binary input data (value count 'vc' set to 2).

    Return default values for binary input data (value count 'vc' set to 2). Also may be used for binning into two categories.

    Definition Classes
    ClassifierReal
  46. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from ClassifierReal

Inherited from Error

Inherited from Classifier

Inherited from AnyRef

Inherited from Any

Ungrouped