class Fac_Cholesky[MatT <: MatriD] extends Factorization with Error
The Fac_Cholesky
class provides methods to factor an 'n-by-n' symmetric,
positive definite matrix 'a' into the product of two matrices:
'l' - an 'n-by-n' left lower triangular matrix 'l.t' - an 'n-by-n' right upper triangular matrix - transpose of 'l'
such that 'a = l * l.t'.
- Alphabetic
- By Inheritance
- Fac_Cholesky
- Error
- Factorization
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Fac_Cholesky(a: MatT)
- a
the symmetric, positive definite matrix to be factor
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
factor(): Fac_Cholesky[MatT]
Factor matrix 'a' into the product of 'l' and 'l.t' using Cholesky Factorization 'a = l * l.t', where 'l.t' is 'l's transpose.
Factor matrix 'a' into the product of 'l' and 'l.t' using Cholesky Factorization 'a = l * l.t', where 'l.t' is 'l's transpose. It uses the Cholesky–Banachiewicz algorithm.
- Definition Classes
- Fac_Cholesky → Factorization
- See also
introcs.cs.princeton.edu/java/95linear
-
def
factor1(): MatriD
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the first matrix.
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the first matrix.
- Definition Classes
- Factorization
-
def
factor12(): (MatriD, MatriD)
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t' or a = q * r, returning both the first and second matrices.
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t' or a = q * r, returning both the first and second matrices.
- Definition Classes
- Factorization
-
def
factor2(): MatriD
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the second matrix.
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the second matrix.
- Definition Classes
- Factorization
-
val
factored: Boolean
Flag indicating whether the matrix has been factored
Flag indicating whether the matrix has been factored
- Attributes
- protected
- Definition Classes
- Factorization
-
def
factors: (MatriD, MatriD)
Return both the lower triangular matrix 'l' and its transpose 'l.t'.
Return both the lower triangular matrix 'l' and its transpose 'l.t'.
- Definition Classes
- Fac_Cholesky → Factorization
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
solve(b: VectoD): VectoD
Use the lower triangular matrix 'l' from the Cholesky Factorization to solve a system of equations 'a * x = b'.
Use the lower triangular matrix 'l' from the Cholesky Factorization to solve a system of equations 'a * x = b'. Return the solution x using forward and backward substitution.
- b
the constant vector
- Definition Classes
- Fac_Cholesky → Factorization
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )