object Householder
The Householder
object provides methods to compute Householder vectors and
reflector matrices.
- Alphabetic
- By Inheritance
- Householder
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
house(x: VectoD): (VectorD, Double)
Compute a Householder vector 'v' and its corresponding scalar 'b', where 'P = I - b * v * v.t' is an orthogonal matrix and 'Px = ||x|| * e_1'.
Compute a Householder vector 'v' and its corresponding scalar 'b', where 'P = I - b * v * v.t' is an orthogonal matrix and 'Px = ||x|| * e_1'.
- x
the vector to create the Householder vector from
- See also
Algorithm 5.1.1 in Matrix Computations.
-
def
houseR(x: VectorD): MatrixD
Compute the Householder reflector matrix 'h = I - 2*u*u.t'.
Compute the Householder reflector matrix 'h = I - 2*u*u.t'.
- x
the vector to create the Householder reflector from
- See also
www.math.siu.edu/matlab/tutorial4.pdf
-
def
houseV(x: VectorD): VectorD
Compute the Householder unit vector 'u', where 'P = I - b * u * u.t' is an orthogonal matrix.
Compute the Householder unit vector 'u', where 'P = I - b * u * u.t' is an orthogonal matrix.
- x
the vector to create the unit Householder vector from
- See also
www.math.siu.edu/matlab/tutorial4.pdf
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )