object SVD4
The SVD4
companion object.
- Alphabetic
- By Inheritance
- SVD4
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(a: MatrixD, name: String): Unit
Test the SVD4 Factorization algorithm on matrix 'a' by factoring the matrix into a left matrix u, a vector s, and a right matrix v.
Test the SVD4 Factorization algorithm on matrix 'a' by factoring the matrix into a left matrix u, a vector s, and a right matrix v. Then multiply back to recover the original matrix.
- a
the given matrix to factor
- name
the name of the test case
-
def
testBid(aa: MatrixD, name: String): Unit
Test the SVD4 Factorization algorithm on a bidiagonalization of matrix 'a', factoring it into a left matrix 'uu', bidiagonal matrix 'bb', and right matrix 'vv'.
Test the SVD4 Factorization algorithm on a bidiagonalization of matrix 'a', factoring it into a left matrix 'uu', bidiagonal matrix 'bb', and right matrix 'vv'. Then multiply back to recover the original matrix.
- name
the name of the test case
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
trailing(b: MatrixD): MatrixD
Compute the trailing 2-by-2 submatrix of 'b.t * b' without multiplying the full matrices.
Compute the trailing 2-by-2 submatrix of 'b.t * b' without multiplying the full matrices.
- b
the given bidiagonal matrix
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )