class Hilbert extends AnyRef
The Hilbert
class provides operators to add, subtract, mutiply, divide and
raise functions. Given two functions, 'f' and 'g', a new function is created.
It also provides methods for computing dot/inner products, norms and
distances for functions defined in Hilbert Space.
On interval [a, b]
Lp-norm (f) = [ ∫f(t)p dt ]1/p
- See also
implicit conversion 'functionS2S2Hilbert' in
package.scala
- Alphabetic
- By Inheritance
- Hilbert
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Hilbert(f: FunctionS2S)
- f
the function to convert into a Hilbert function
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
- def *(g: Double): (Double) ⇒ Double
-
def
*(g: FunctionS2S): (Double) ⇒ Double
Multiply function 'f' by function 'g', returning a new function.
Multiply function 'f' by function 'g', returning a new function.
- g
the other function
- def +(g: Double): (Double) ⇒ Double
-
def
+(g: FunctionS2S): (Double) ⇒ Double
Add function 'f' and function 'g', returning a new function.
Add function 'f' and function 'g', returning a new function.
- g
the other function
- def -(g: Double): (Double) ⇒ Double
-
def
-(g: FunctionS2S): (Double) ⇒ Double
From function 'f' subtract function 'g', returning a new function.
From function 'f' subtract function 'g', returning a new function.
- g
the other function
- def /(g: Double): (Double) ⇒ Double
-
def
/(g: FunctionS2S): (Double) ⇒ Double
Divide function 'f' by function 'g', returning a new function.
Divide function 'f' by function 'g', returning a new function.
- g
the other function
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
dist(g: FunctionS2S, a: Double = 0.0, b: Double = 1.0): Double
Compute the distance in L2 space between function 'f' and function 'g'.
Compute the distance in L2 space between function 'f' and function 'g'.
- g
the other function
- a
the start of the interval
- b
the end of the interval
-
def
dist_p(g: FunctionS2S, p: Int, a: Double = 0.0, b: Double = 1.0): Double
Compute the distance in Lp space between function 'f' and function 'g'.
Compute the distance in Lp space between function 'f' and function 'g'.
- g
the other function
- p
the level, e.g., 1, 2, ...
- a
the start of the interval
- b
the end of the interval
-
def
dot(g: FunctionS2S, a: Double = 0.0, b: Double = 1.0): Double
Compute the dot/inner product of functions 'f' and 'g'.
Compute the dot/inner product of functions 'f' and 'g'.
- g
the other function
- a
the start of the interval
- b
the end of the interval
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
norm(a: Double = 0.0, b: Double = 1.0): Double
Compute the L2 norm of function 'f'.
Compute the L2 norm of function 'f'.
- a
the start of the interval
- b
the end of the interval
-
def
normSq(a: Double = 0.0, b: Double = 1.0): Double
Compute the L2 norm squared of function 'f', returning a new function.
Compute the L2 norm squared of function 'f', returning a new function.
- a
the start of the interval
- b
the end of the interval
-
def
normSq_p(p: Int, a: Double = 0.0, b: Double = 1.0): Double
Compute the Lp norm squared of function 'f'.
Compute the Lp norm squared of function 'f'.
- p
the level, e.g., 1, 2, ...
- a
the start of the interval
- b
the end of the interval
-
def
norm_p(p: Int, a: Double = 0.0, b: Double = 1.0): Double
Compute the Lp norm of function 'f'.
Compute the Lp norm of function 'f'.
- p
the level, e.g., 1, 2, ...
- a
the start of the interval
- b
the end of the interval
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
unary_-: (Double) ⇒ Double
Negate the function 'f' (unary minus), returning a new function.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
~^(p: Double): (Double) ⇒ Double
Raise function 'f' to the 'p'th power, returning a new function.
Raise function 'f' to the 'p'th power, returning a new function.
- p
the power/exponent
-
def
~^(p: Int): (Double) ⇒ Double
Raise function 'f' to the 'p'th power, returning a new function.
Raise function 'f' to the 'p'th power, returning a new function.
- p
the integer-valued power/exponent