object Integral
The Integral
object provides implementations for five basic integration methods:
∫f(x)dx on interval [a, b]
trap - trapezoidal method - linear simpson - Simpson method - quadratic simpson38 - 3/8 Simpson method - cubic boole - Boole Method - quartic romberg - Romberg method - recursive, uses trap
The first four are Composite Newton-Coates type integrators.
- See also
en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
- Alphabetic
- By Inheritance
- Integral
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
boole(a: Double, b: Double, f: FunctionS2S, sd: Int = SUBDIV): Double
Integrate '∫f(x)dx' on interval '[a, b]' using the Boole method.
Integrate '∫f(x)dx' on interval '[a, b]' using the Boole method.
- a
the start of the integration interval
- b
the end of the integration interval
- f
the function to be integrated
- sd
the number of subdivision (intervals) of [a, b]
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
integrate(on: Interval, f: FunctionS2S): Double
Integrate '∫f(x)dx' on interval 'on' using the default method.
Integrate '∫f(x)dx' on interval 'on' using the default method.
- on
the interval of integration, e.g., (0.0, 2.0)
- f
the function to be integrated
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
romberg(a: Double, b: Double, f: FunctionS2S, iter: Int = ITER): Double
Integrate '∫f(x)dx' on interval '[a, b]' using the Romberg method.
Integrate '∫f(x)dx' on interval '[a, b]' using the Romberg method. Translation of Java code from the site below to Scala.
- a
the start of the integration interval
- b
the end of the integration interval
- f
the function to be integrated
- iter
the number of iterative steps
- See also
cs.roanoke.edu/Spring2012/CPSC402A/Integrate.java FIX: shouldn't need a 2D array/matrix.
-
def
simpson(a: Double, b: Double, f: FunctionS2S, sd: Int = SUBDIV): Double
Integrate '∫f(x)dx' on interval '[a, b]' using the Simpson method.
Integrate '∫f(x)dx' on interval '[a, b]' using the Simpson method.
- a
the start of the integration interval
- b
the end of the integration interval
- f
the function to be integrated
- sd
the number of subdivision (intervals) of [a, b]
-
def
simpson38(a: Double, b: Double, f: FunctionS2S, sd: Int = SUBDIV): Double
Integrate '∫f(x)dx' on interval '[a, b]' using the 3/8 Simpson method.
Integrate '∫f(x)dx' on interval '[a, b]' using the 3/8 Simpson method.
- a
the start of the integration interval
- b
the end of the integration interval
- f
the function to be integrated
- sd
the number of subdivision (intervals) of [a, b]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(a: Double, b: Double, f: FunctionS2S, ans: Double, sd: Int = SUBDIV): Unit
Test each of the numerical integrators: '∫f(x)dx' on interval '[a, b]'.
Test each of the numerical integrators: '∫f(x)dx' on interval '[a, b]'.
- a
the start of the integration interval
- b
the end of the integration interval
- f
the function to be integrated
- ans
the answer to the integration problem, if known (for % error)
- sd
the number of subdivision (intervals) of [a, b]
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
trap(a: Double, b: Double, f: FunctionS2S, sd: Int = SUBDIV): Double
Integrate '∫f(x)dx' on interval '[a, b]' using the trapezoidal method.
Integrate '∫f(x)dx' on interval '[a, b]' using the trapezoidal method.
- a
the start of the integration interval
- b
the end of the integration interval
- f
the function to be integrated
- sd
the number of subdivision (intervals) of [a, b]
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- def ∫(on: Interval, f: FunctionS2S): Double