object Initializer
The Initializer
object provides functions to initialize the parameters/weights
of Neural Networks. Supports Uniform, Normal and Nguyen & Widrow methods.
- Alphabetic
- By Inheritance
- Initializer
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
weightMat(rows: Int, cols: Int, stream: Int = 0, limit: Double = -1.0): MatriD
Generate a random weight/parameter matrix with elements values in (0, limit).
Generate a random weight/parameter matrix with elements values in (0, limit).
- rows
the number of rows
- cols
the number of columns
- stream
the random number stream to use
- limit
the maximum value for any weight
-
def
weightMat2(rows: Int, cols: Int, stream: Int = 0): MatriD
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
- rows
the number of rows
- cols
the number of columns
- stream
the random number stream to use
-
def
weightMat3(rows: Int, cols: Int, stream: Int = 0): MatriD
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow method.
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow method.
- rows
the number of rows
- cols
the number of columns
- stream
the random number stream to use
- See also
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6945481
-
def
weightVec(rows: Int, stream: Int = 0, limit: Double = -1.0): VectoD
Generate a random weight/parameter matrix with elements values in (0, limit).
Generate a random weight/parameter matrix with elements values in (0, limit).
- rows
the number of rows
- stream
the random number stream to use
- limit
the maximum value for any weight
-
def
weightVec2(rows: Int, stream: Int = 0): VectoD
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
- rows
the number of rows
- stream
the random number stream to use
-
def
weightVec3(rows: Int, stream: Int = 0): VectoD
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow Method.
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow Method.
- rows
the number of rows
- stream
the random number stream to use
- See also
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6945481
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated