class Fit extends QoF with Error
The Fit
class provides methods to determine basic Quality of Fit 'QoF' measures.
- Alphabetic
- By Inheritance
- Fit
- Error
- QoF
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Fit(y: VectoD, n: Int, dfm: Double, df: Double)
- y
the values in the m-dimensional response vector
- n
the number of parameters (b.dim)
- dfm
the degrees of freedom for model/regression
- df
the degrees of freedom for error
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
diagnose(e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym_: Double = noDouble): Unit
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses.
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses. For some models the instances may be weighted.
- e
the m-dimensional error/residual vector (yy - yp)
- yy
the actual response/output vector to use (test/full)
- yp
the predicted response/output vector (test/full)
- w
the weights on the instances (defaults to null)
- ym_
the mean of the actual response/output vector to use (training/full)
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
f_(z: Double): String
Format a double value.
-
def
fit: VectoD
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method.
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Override to add more quality of fit measures.
-
def
fitLabel: Seq[String]
Return the labels for the Quality of Fit (QoF) measures.
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).- Definition Classes
- QoF
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
help: String
Return the help string that describes the Quality of Fit (QoF) measures provided by the
Fit
class. -
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
ll(ms: Double = mse0, s2: Double = sig2e, m2: Int = m): Double
The log-likelihood function times -2.
The log-likelihood function times -2. Override as needed.
- ms
raw Mean Squared Error
- s2
MLE estimate of the population variance of the residuals
- See also
www.stat.cmu.edu/~cshalizi/mreg/15/lectures/06/lecture-06.pdf
www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811 Section 2.11
-
def
mse_: Double
Return the mean of squares for error (sse / df._2).
Return the mean of squares for error (sse / df._2). Must call diagnose first.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
resetDF(df_update: PairD): Unit
Reset the degrees of freedom to the new updated values.
Reset the degrees of freedom to the new updated values. For some models, the degrees of freedom is not known until after the model is built.
- df_update
the updated degrees of freedom (model, error)
-
var
sig2e: Double
- Attributes
- protected
-
def
summary(b: VectoD, stdErr: VectoD, vf: VectoD, show: Boolean = false): String
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
- b
the parameters/coefficients for the model
- vf
the Variance Inflation Factors (VIFs)
- show
flag indicating whether to print the summary
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated