class MovingAverageD extends ForecasterVec with NoFeatureSelectionF
The MovingAverageD
class provides basic time series analysis capabilities.
For a 'MovingAverageD' model with the time series data stored in vector 'y', the
next value 'y_t = y(t)' may be predicted based on the mean of prior values
of 'y' and its noise:
y_t = mean (y_t-1, ..., y_t-q) + e_t
where 'e' is the noise vector and 'q' is the number of prior values used to compute the mean.
- Alphabetic
- By Inheritance
- MovingAverageD
- NoFeatureSelectionF
- ForecasterVec
- Predictor
- Model
- Fit
- Error
- QoF
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
MovingAverageD(y: VectoD, hparam: HyperParameter = MovingAverage.hp)
- y
the response vector (time series data)
- hparam
the hyper-parameters
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
acF: VectoD
Return the autocorrelation.
Return the autocorrelation. Must call 'train' first.
- Definition Classes
- ForecasterVec
-
def
analyze(x_: MatriD = null, y_: VectoD = y, x_e: MatriD = null, y_e: VectoD = y): ForecasterVec
Analyze a dataset using this model using ordinary training with the 'train' method.
Analyze a dataset using this model using ordinary training with the 'train' method.
- x_
the training/full the data/input matrix (ignore)
- y_
the training/full the response/output vector
- x_e
the test/full data/input matrix (ignore)
- y_e
the test/full response/output vector
- Definition Classes
- ForecasterVec → Predictor
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
corrMatrix(xx: MatriD): MatriD
Return the correlation matrix for the columns in data matrix 'xx'.
Return the correlation matrix for the columns in data matrix 'xx'.
- xx
the data matrix shose correlation matrix is sought
- Definition Classes
- Predictor
-
def
diagnose(e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym_: Double = noDouble): Unit
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses.
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses. For some models the instances may be weighted.
- e
the m-dimensional error/residual vector (yy - yp)
- yy
the actual response/output vector to use (test/full)
- yp
the predicted response/output vector (test/full)
- w
the weights on the instances (defaults to null)
- ym_
the mean of the actual response/output vector to use (training/full)
-
var
e: VectoD
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(y_e: VectoD = y): ForecasterVec
Compute the error (difference between actual and predicted) and useful diagnostics for the dataset.
Compute the error (difference between actual and predicted) and useful diagnostics for the dataset.
- y_e
the test/full actual response/output vector
- Definition Classes
- ForecasterVec
-
def
eval(x_e: MatriD, y_e: VectoD): ForecasterVec
Compute the error (difference between actual and predicted) and useful diagnostics for the dataset.
Compute the error (difference between actual and predicted) and useful diagnostics for the dataset.
- x_e
the test/full data/input matrix (ignored, pass null)
- y_e
the test/full actual response/output vector
- Definition Classes
- ForecasterVec → Model
-
def
evalf(y_e: VectoD, yf: VectoD): ForecasterVec
Compute the error (difference between actual and predicted) and useful diagnostics for the dataset.
Compute the error (difference between actual and predicted) and useful diagnostics for the dataset.
- y_e
the test/full actual response/output vector
- yf
the vector of forecasts
- Definition Classes
- ForecasterVec
-
def
f_(z: Double): String
Format a double value.
-
def
fit: VectoD
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method.
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Override to add more quality of fit measures.
-
def
fitLabel: Seq[String]
Return the labels for the Quality of Fit (QoF) measures.
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).- Definition Classes
- QoF
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
forecast(t: Int, h: Int = 1): VectoD
Produce a vector of size 'h', of 1 through 'h'-steps ahead forecasts for the model.
Produce a vector of size 'h', of 1 through 'h'-steps ahead forecasts for the model.
- t
the time point from which to make forecasts
- h
the forecasting horizon, number of steps ahead to produce forecasts
- Definition Classes
- MovingAverageD → ForecasterVec
-
def
forecast(yf: MatriD, t: Int, h: Int): VectoD
Produce a vector of size 'h', of 1 through 'h'-steps ahead forecasts for the model.
Produce a vector of size 'h', of 1 through 'h'-steps ahead forecasts for the model.
forecast the following time points: t, t+1, ..., t-1+h.
Note, invoke 'forecastAll' to create the 'yf' matrix.
- yf
the y-forecast matrix for all time and horizons
- t
the time point from which to make forecasts
- h
the forecasting horizon, number of steps ahead to produce forecasts
- Definition Classes
- ForecasterVec
-
def
forecastAll(h: Int): MatriD
Forecast values for all time points using 1 through 'h'-steps ahead forecasts.
Forecast values for all time points using 1 through 'h'-steps ahead forecasts. The 'h'-th row of matrix is the horizon 'h' forecast (where 'h = 0' is actual data).
- h
the forecasting horizon, number of steps ahead to produce forecasts, must be > 0
- Definition Classes
- MovingAverageD → ForecasterVec
-
def
forecastAll(h: Int, p: Int): MatriD
Forecast values for all time points using 1 through 'h'-steps ahead forecasts.
Forecast values for all time points using 1 through 'h'-steps ahead forecasts. The 'h'-th row of matrix is the horizon 'h' forecast (where 'h = 0' is actual data).
- h
the forecasting horizon, number of steps ahead to produce forecasts, must be > 0
- p
the order of the model (e.g, p in AR, q in MA) or number of values to use in making forecasts, must be > 0
- Definition Classes
- ForecasterVec
-
def
forecastX(y: VectoD, t: Int, h: Int = 1): Double
Produce h-steps ahead forecast on the testing data during cross validation.
Produce h-steps ahead forecast on the testing data during cross validation. Likely to need overriding.
- y
the current response vector
- t
the time point/index to be forecast
- h
the forecasting horizon, number of steps ahead to produce forecast
- Definition Classes
- ForecasterVec
-
def
forwardSel(cols: Set[Int], index_q: Int): (Int, ForecasterVec)
- Definition Classes
- NoFeatureSelectionF
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getX: MatriD
Return the 'used' data matrix 'x' (for such models, it's null).
Return the 'used' data matrix 'x' (for such models, it's null).
- Definition Classes
- ForecasterVec → Predictor
-
def
getY: VectoD
Return the 'used' response vector 'y'.
Return the 'used' response vector 'y'. Mainly for derived classes where 'y' is transformed, e.g.,
TranRegression
,Regression4TS
.- Definition Classes
- ForecasterVec → Predictor
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
help: String
Return the help string that describes the Quality of Fit (QoF) measures provided by the
Fit
class. -
def
hparameter: HyperParameter
Return the hyper-parameters.
Return the hyper-parameters.
- Definition Classes
- ForecasterVec → Model
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
ll(ms: Double = mse0, s2: Double = sig2e, m2: Int = m): Double
The log-likelihood function times -2.
The log-likelihood function times -2. Override as needed.
- ms
raw Mean Squared Error
- s2
MLE estimate of the population variance of the residuals
- Definition Classes
- Fit
- See also
www.stat.cmu.edu/~cshalizi/mreg/15/lectures/06/lecture-06.pdf
www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811 Section 2.11
-
val
m: Int
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
val
ml: Int
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
val
modelConcept: URI
An optional reference to an ontological concept
An optional reference to an ontological concept
- Definition Classes
- Model
-
def
modelName: String
Return the model name including its current hyper-parameter, e.g., MovingAverageD(3)
Return the model name including its current hyper-parameter, e.g., MovingAverageD(3)
- Definition Classes
- MovingAverageD → Model
-
def
mse_: Double
Return the mean of squares for error (sse / df._2).
Return the mean of squares for error (sse / df._2). Must call diagnose first.
- Definition Classes
- Fit
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
pacF: VectoD
Return the partial autocorrelation.
Return the partial autocorrelation. Must call 'train' first.
- Definition Classes
- ForecasterVec
-
var
pacf: VectoD
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
def
parameter: VectoD
Return the parameter vector (its null).
Return the parameter vector (its null).
- Definition Classes
- MovingAverageD → Model
-
def
plotFunc(fVec: VectoD, name: String, show: Boolean = true): Unit
Plot a function, e.g., Auto-Correlation Function 'ACF', Partial Auto-Correlation Function 'PACF'.
Plot a function, e.g., Auto-Correlation Function 'ACF', Partial Auto-Correlation Function 'PACF'.
- fVec
the vector given function values
- name
the name of the function
- show
whether to show the fVec values
- Definition Classes
- ForecasterVec
-
def
plotFunc2(fVec: VectoD, name: String, show: Boolean = true): Unit
Plot a function, e.g., Auto-Correlation Function 'ACF', Partial Auto-Correlation Function 'PACF' with confidence bound.
Plot a function, e.g., Auto-Correlation Function 'ACF', Partial Auto-Correlation Function 'PACF' with confidence bound.
- fVec
the vector given function values
- name
the name of the function
- show
whether to show the fVec values
- Definition Classes
- ForecasterVec
-
def
predict(z: MatriD): VectoD
Predict the value of 'y = f(z)' for each row of matrix 'z'.
Predict the value of 'y = f(z)' for each row of matrix 'z'.
- z
the new matrix to predict
- Definition Classes
- ForecasterVec → Predictor
-
def
predict(y_null: VectoD = null): Double
Return the horizon 1 forecast beyond the end of the time-series.
Return the horizon 1 forecast beyond the end of the time-series.
- y_null
the actual response/output vector to use (ignored)
- Definition Classes
- ForecasterVec → Predictor
-
def
predict(z: VectoI): Double
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
predictAll(): VectoD
Return the vector of predicted values for all original data.
Return the vector of predicted values for all original data. Undo initial zeroing of the data 'y - mu'.
- Definition Classes
- ForecasterVec
-
def
predictAllz(): VectoD
Return a vector that is the predictions (zero-centered) of a moving average model, with side-effect of updating the error.
Return a vector that is the predictions (zero-centered) of a moving average model, with side-effect of updating the error.
- Definition Classes
- MovingAverageD → ForecasterVec
-
var
psi: MatriD
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
def
report: String
Return a basic report on the trained model.
Return a basic report on the trained model.
- Definition Classes
- ForecasterVec → Model
-
def
resetDF(df_update: PairD): Unit
Reset the degrees of freedom to the new updated values.
Reset the degrees of freedom to the new updated values. For some models, the degrees of freedom is not known until after the model is built.
- df_update
the updated degrees of freedom (model, error)
- Definition Classes
- Fit
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- ForecasterVec → Predictor
-
var
sig2e: Double
- Attributes
- protected
- Definition Classes
- Fit
-
var
stats: Stats
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
def
summary(b: String, modelEq: String): String
Return a detailed summary of the trained model.
Return a detailed summary of the trained model.
- b
the symbol(s) used for the parameters
- modelEq
the model equation as a string
- Definition Classes
- ForecasterVec
-
def
summary(b: VectoD, stdErr: VectoD, vf: VectoD, show: Boolean = false): String
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
- b
the parameters/coefficients for the model
- vf
the Variance Inflation Factors (VIFs)
- show
flag indicating whether to print the summary
- Definition Classes
- Fit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(modelName: String, doPlot: Boolean = true): Unit
Test the model on the full dataset (i.e., train and evaluate on full dataset).
Test the model on the full dataset (i.e., train and evaluate on full dataset).
- modelName
the name of the model being tested
- doPlot
whether to plot the actual vs. predicted response
- Definition Classes
- Predictor
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(x_null: MatriD, y_: VectoD): MovingAverageD
Train/fit an
MovingAverageD
model to the times series data in vector 'y_'.Train/fit an
MovingAverageD
model to the times series data in vector 'y_'. Note: forMovingAverageD
there are no parameters to train.- x_null
the data/input matrix (ignored)
- y_
the response/output vector (currently only works for y)
- Definition Classes
- MovingAverageD → ForecasterVec → Model
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
var
yf: MatriD
- Attributes
- protected
- Definition Classes
- ForecasterVec
-
var
z: VectoD
- Attributes
- protected
- Definition Classes
- ForecasterVec
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated