abstract class PredictorVec extends Predictor with Error
The PredictorVec
class supports term expanded regression (work is delegated
to the Regression
class). Fit the parameter vector 'b' in the regression equation.
Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b'
using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- Alphabetic
- By Inheritance
- PredictorVec
- Predictor
- Model
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
PredictorVec(t: VectoD, y: VectoD, ord: Int)
- t
the input vector: t_i expands to x_i = vector
- y
the response vector
- ord
the order of the expansion
Abstract Value Members
-
abstract
def
crossVal(k: Int = 10, ord: Int = 10, rando: Boolean = true): Unit
The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method.
The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method. The 'algor' parameter may be specified as a lambda function to create the prediction algorithm.
- k
the number of crosses and cross-validations (defaults to 10x).
- ord
the given order
- rando
whether to use randomized cross-validation
-
abstract
def
expand(t: Double): VectoD
Expand the scalar 't' into a vector of terms/columns.
Expand the scalar 't' into a vector of terms/columns.
- t
the scalar to expand into the vector
-
abstract
def
predict(z: Double): Double
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot expand (z)', e.g., '(b_0, b_1, b_2) dot (1, z, z^2)'.
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot expand (z)', e.g., '(b_0, b_1, b_2) dot (1, z, z^2)'.
- z
the new scalar to predict
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
analyze(x_r: MatriD = null, y_r: VectoD = y, x_e: MatriD = null, y_e: VectoD = y): PredictorVec
Analyze a dataset using this model using ordinary training with the 'train' method.
Analyze a dataset using this model using ordinary training with the 'train' method.
- x_r
the training/full data/input matrix
- y_r
the training/full response/output vector
- x_e
the test/full data/input matrix
- y_e
the test/full response/output vector
- Definition Classes
- PredictorVec → Predictor
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
backwardElim(cols: Set[Int], index_q: Int = index_rSqBar, first: Int = 1): (Int, PredictorMat)
Perform backward elimination to remove the least predictive variable from the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit.
Perform backward elimination to remove the least predictive variable from the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit. May be called repeatedly.
- cols
the columns of matrix x included in the existing model
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- first
first variable to consider for elimination (default (1) assume intercept x_0 will be in any model)
- See also
Fit
for index of QoF measures.
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
corrMatrix(xx: MatriD): MatriD
Return the correlation matrix for the columns in data matrix 'xx'.
Return the correlation matrix for the columns in data matrix 'xx'.
- xx
the data matrix shose correlation matrix is sought
- Definition Classes
- Predictor
-
def
crossValidate(algor: (VectoD, VectoD, Int) ⇒ PredictorVec, k: Int = 10, rando: Boolean = true): Array[Statistic]
- Attributes
- protected
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(yy: VectoD): Regression
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- yy
the test response vector
-
def
eval(xx: MatriD, yy: VectoD = y): Regression
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector
- Definition Classes
- PredictorVec → Model
-
def
eval(tt: VectoD, yy: VectoD): Regression
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- tt
the test data vector (unexpanded)
- yy
the test response vector
-
def
expand(t: VectoD): MatriD
Expand the vector 't' into a matrix.
Expand the vector 't' into a matrix.
- t
the vector to expand into the matrix
-
def
fit: VectoD
Return the quality of fit measures including 'rSq'.
-
def
fitLabel: Seq[String]
Return the labels for the fit.
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures.
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
forwardSel(cols: Set[Int], index_q: Int = index_rSqBar): (Int, PredictorMat)
Perform forward selection to add the most predictive variable to the existing model, returning the variable to add, the new parameter vector and the new quality of fit.
Perform forward selection to add the most predictive variable to the existing model, returning the variable to add, the new parameter vector and the new quality of fit. May be called repeatedly.
- cols
the columns of matrix x included in the existing model
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- Definition Classes
- PredictorVec → Predictor
- See also
Fit
for index of QoF measures.
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getX: MatriD
Return the 'used' data matrix 'x'.
Return the 'used' data matrix 'x'. Mainly for derived classes where 'x' is expanded from the given columns in 'x_', e.g.,
QuadRegression
add squared columns.- Definition Classes
- PredictorVec → Predictor
-
def
getY: VectoD
Return the 'used' response vector 'y'.
Return the 'used' response vector 'y'. Mainly for derived classes where 'y' is transformed, e.g.,
TranRegression
,Regression4TS
.- Definition Classes
- PredictorVec → Predictor
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hparameter: HyperParameter
Return the hyper-parameters.
Return the hyper-parameters.
- Definition Classes
- PredictorVec → Model
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
modelConcept: URI
An optional reference to an ontological concept
An optional reference to an ontological concept
- Definition Classes
- Model
-
def
modelName: String
An optional name for the model (or modeling technique)
An optional name for the model (or modeling technique)
- Definition Classes
- Model
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
parameter: VectoD
Return the vector of parameters/coefficients.
Return the vector of parameters/coefficients.
- Definition Classes
- PredictorVec → Model
-
def
predict(z: MatriD = rg.getX): VectoD
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
- z
the new matrix to predict
- Definition Classes
- PredictorVec → Predictor
-
def
predict(z: VectoD): Double
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
- z
the new expanded/orhogonalized vector to predict
- Definition Classes
- PredictorVec → Predictor
-
def
predict(z: VectoI): Double
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
report: String
Return a basic report on the trained model.
Return a basic report on the trained model.
- Definition Classes
- PredictorVec → Model
- See also
'summary' method for more details
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- PredictorVec → Predictor
-
var
rg: Regression
- Attributes
- protected
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(modelName: String, doPlot: Boolean = true): Unit
Test the model on the full dataset (i.e., train and evaluate on full dataset).
Test the model on the full dataset (i.e., train and evaluate on full dataset).
- modelName
the name of the model being tested
- doPlot
whether to plot the actual vs. predicted response
- Definition Classes
- Predictor
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(xx: MatriD = MatrixD (Seq (t)), yy: VectoD = y): Regression
Train the predictor by fitting the parameter vector 'b' in the multiple regression equation using the least squares method.
Train the predictor by fitting the parameter vector 'b' in the multiple regression equation using the least squares method.
- xx
the data/input single column matrix (unexpanded)
- yy
the response/output vector
- Definition Classes
- PredictorVec → Model
-
def
vif(skip: Int = 1): VectoD
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'x_j' against the rest of the variables.
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'x_j' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'x_j' can be predicted from the other variables, so 'x_j' may be a candidate for removal from the model.
- skip
the number of columns of x at the beginning to skip in computing VIF
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated