object AugLagrangian
The AugLagrangian
class implements the Augmented Lagrangian Method for
solving equality constrained optimization problems.
Minimize objective function 'f' subject to constraint 'h' to find an optimal
solution for 'x'.
min f(x) s.t. h(x) = 0
f = objective function h = equality contraint x = solution vector
Note: the hyper-parameters 'eta' and 'p0' will need to be tuned per problem.
- See also
AugLagrangianTest
for how to set up 'f', 'h' and 'grad' functions
- Alphabetic
- By Inheritance
- AugLagrangian
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- type Gradient = (VectoD, Double, Double) ⇒ VectoD
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
solve(x: VectoD, f: FunctionV_2S, h: FunctionV_2S, grad: Gradient): (VectoD, MatriD)
Solve for an optimal solution to the equality constrained optimization problem.
Solve for an optimal solution to the equality constrained optimization problem.
- x
initial guess for solution vector
- f
the objective function to be minimized
- h
the equality constraint
- grad
the gradient of Lagranian (must be specified by caller)
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated