class CheckLP extends Error
The CheckLP
class checks the solution to Linear Programming (LP) problems.
Given a constraint matrix 'a', limit/RHS vector 'b' and cost vector 'c',
determine if the values for the solution/decision vector 'x' minimizes the
objective function 'f(x)', while satisfying all of the constraints, i.e.,
minimize f(x) = c x subject to a x <= b, x >= 0
Check the feasibility and optimality of the solution.
- Alphabetic
- By Inheritance
- CheckLP
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
CheckLP(a: MatriD, b: VectoD, c: VectoD)
- a
the M-by-N constraint matrix
- b
the M-length limit/RHS vector (make b_i negative for ">=" constraint => surplus)
- c
the N-length cost vector
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
isCorrect(x: VectoD, y: VectoD, f: Double): Boolean
Check whether the solution is correct, feasible and optimal.
Check whether the solution is correct, feasible and optimal.
- x
the N-length primal solution vector
- y
the M-length dual solution vector
- f
the optimum (minimum) value of the objective function
-
def
isDualFeasible(y: VectoD): Boolean
Determine whether the solution dual feasible 'y <= 0 and y a <= c'.
Determine whether the solution dual feasible 'y <= 0 and y a <= c'.
- y
the M-length dual solution vector
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isOptimal(x: VectoD, y: VectoD, f: Double): Boolean
Check whether the optimum objective function value f == c x == y b.
Check whether the optimum objective function value f == c x == y b.
- x
the N-length primal solution vector
- y
the M-length dual solution vector
- f
the optimum (minimum) value of the objective function
-
def
isPrimalFeasible(x: VectoD): Boolean
Determine whether the solution primal feasible 'x >= 0 and a x [<= | >=] b'.
Determine whether the solution primal feasible 'x >= 0 and a x [<= | >=] b'.
- x
the N-length primal solution vector
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated