case class Normal(mu: Double = 0.0, sigma2: Double = 1.0, stream: Int = 0) extends Variate with Product with Serializable
This class generates Normal
(Gaussian) random variates.
This continuous RV models normally distributed data (bell curve).
When summed, most distributions tend to Normal (Central Limit Theorem).
- mu
the mean
- sigma2
the variance (sigma squared)
- stream
the random number stream
- See also
http://www.math.uah.edu/stat/special/Normal.html
- Alphabetic
- By Inheritance
- Normal
- Serializable
- Serializable
- Product
- Equals
- Variate
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Normal(mu: Double = 0.0, sigma2: Double = 1.0, stream: Int = 0)
- mu
the mean
- sigma2
the variance (sigma squared)
- stream
the random number stream
Value Members
-
def
discrete: Boolean
Determine whether the distribution is discrete or continuous.
Determine whether the distribution is discrete or continuous.
- Definition Classes
- Variate
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
gen: Double
Determine the next random number for the particular distribution.
- def gen0: Double
-
def
gen1(z: Double): Double
Determine the next random number for the particular distribution.
-
def
igen: Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates.
- Definition Classes
- Variate
-
def
igen1(z: Double): Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- Variate
-
val
mean: Double
Precompute the mean for the particular distribution.
- val mu: Double
-
def
pf(z: Double): Double
Compute the probability function (pf): Either (a) the probability density function (pdf) for continuous RV's or (b) the probability mass function (pmf) for discrete RV's.
-
def
pmf(k: Int = 0): Array[Double]
Return the entire probability mass function (pmf) for finite discrete RV's.
Return the entire probability mass function (pmf) for finite discrete RV's.
- k
number of objects of the first type
- Definition Classes
- Variate
-
def
sgen: String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method.
- Definition Classes
- Variate
-
def
sgen1(z: Double): String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- Variate
- val sigma2: Double
- val stream: Int