case class _HyperExponential(mu: Double = 1.0, sigma: Double = 2, stream: Int = 0) extends Variate with Product with Serializable
This class generates HyperExponential
random variates.
This continuous RV models the time until an event occurs (higher coefficient
of variation than exponential distribution). FIX
- mu
the mean
- sigma
the standard deviation
- stream
the random number stream
- Alphabetic
- By Inheritance
- _HyperExponential
- Serializable
- Serializable
- Product
- Equals
- Variate
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
_HyperExponential(mu: Double = 1.0, sigma: Double = 2, stream: Int = 0)
- mu
the mean
- sigma
the standard deviation
- stream
the random number stream
Value Members
-
def
discrete: Boolean
Determine whether the distribution is discrete or continuous.
Determine whether the distribution is discrete or continuous.
- Definition Classes
- Variate
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
gen: Double
Determine the next random number for the particular distribution.
Determine the next random number for the particular distribution.
- Definition Classes
- _HyperExponential → Variate
-
def
gen1(z: Double): Double
Determine the next random number for the particular distribution.
Determine the next random number for the particular distribution. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- _HyperExponential → Variate
-
def
igen: Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates.
- Definition Classes
- Variate
-
def
igen1(z: Double): Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- Variate
-
val
mean: Double
Precompute the mean for the particular distribution.
Precompute the mean for the particular distribution.
- Definition Classes
- _HyperExponential → Variate
- val mu: Double
-
def
pf(z: Double): Double
Compute the probability function (pf): Either (a) the probability density function (pdf) for continuous RV's or (b) the probability mass function (pmf) for discrete RV's.
Compute the probability function (pf): Either (a) the probability density function (pdf) for continuous RV's or (b) the probability mass function (pmf) for discrete RV's.
- z
the mass point whose probability density/mass is sought
- Definition Classes
- _HyperExponential → Variate
-
def
pmf(k: Int = 0): Array[Double]
Return the entire probability mass function (pmf) for finite discrete RV's.
Return the entire probability mass function (pmf) for finite discrete RV's.
- k
number of objects of the first type
- Definition Classes
- Variate
-
def
sgen: String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method.
- Definition Classes
- Variate
-
def
sgen1(z: Double): String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- Variate
- val sigma: Double
- val stream: Int