object Quantile extends Error
The Quantile
object contains methods for computing 'Finv', the "inverse"
Cumulative Distribution Functions (iCDF's) for popular sampling distributions:
StandardNormal
, StudentT
, ChiSquare
and Fisher
.
For a given CDF 'F' and probability/quantile 'p', compute 'x' such that 'F(x) = p'.
The iCDF may be thought of as giving value of 'x' for which the area under the
curve from -infinity to 'x' of the probability density function (pdf) is equal to 'p'.
- Alphabetic
- By Inheritance
- Quantile
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
check(p: Double, x_min: Double = NEGATIVE_INFINITY): (Boolean, Double)
Check whether the probability 'p' is out of range (giving NaN) or extreme, either close to 0 (giving -infinity) or 1 (giving +infinity).
Check whether the probability 'p' is out of range (giving NaN) or extreme, either close to 0 (giving -infinity) or 1 (giving +infinity). Return (true, special-value) for these cases.
- p
the p-th quantile, e.g., .95 (95%)
- x_min
the smallest value in the distribution's domain
-
def
chiSquareInv(p: Double, df: Int): Double
Compute the 'p'-th quantile for "ChiSquare distribution" function.
Compute the 'p'-th quantile for "ChiSquare distribution" function.
- p
the p-th quantile, e.g., .95 (95%)
- df
the degrees of freedom
-
def
chiSquareInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "ChiSquare distribution" function using bisection search of the CDF.
Compute the 'p'-th quantile for "ChiSquare distribution" function using bisection search of the CDF. FIX: need a faster algorithm
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameter for the degrees of freedom
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
empiricalInv(p: Double, data: Parameters): Double
Compute the 'p'-th quantile for the Empirical distribution function.
Compute the 'p'-th quantile for the Empirical distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- data
parameters as data
-
def
empiricalInv(p: Double, eCDF: (VectorD, VectorD)): Double
Compute the 'p'-th quantile for the Empirical distribution function.
Compute the 'p'-th quantile for the Empirical distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- eCDF
the empirical CDF
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
exponentialInv(p: Double, pr: Parameters = null): Double
Compute the 'p'-th quantile for the Exponential distribution function.
Compute the 'p'-th quantile for the Exponential distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameter for the rate
-
def
fisherInv(p: Double, df: (Int, Int)): Double
Compute the 'p'-th quantile for "Fisher (F) distribution" function.
Compute the 'p'-th quantile for "Fisher (F) distribution" function.
- p
the p-th quantile, e.g., .95 (95%)
- df
the pair of degrees of freedom ('df1' and 'df2')
-
def
fisherInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "Fisher (F) distribution" function using bisection search of the CDF.
Compute the 'p'-th quantile for "Fisher (F) distribution" function using bisection search of the CDF. FIX: need a faster algorithm
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameters for the degrees of freedom (numerator, denominator)
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
normalInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for the "standard normal distribution" function.
Compute the 'p'-th quantile for the "standard normal distribution" function.
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameter for the distribution (currently not used)
- See also
home.online.no/~pjacklam/notes/invnorm/impl/sprouse/ltqnorm.c -------------------------------------------------------------------------
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
studentTInv(p: Double, df: Int): Double
Compute the 'p'-th quantile for "Student's t" distribution function.
Compute the 'p'-th quantile for "Student's t" distribution function.
- p
the p-th quantile, e.g., 95 (95%)
- df
the degrees of freedom
-
def
studentTInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "Student's t" distribution function.
Compute the 'p'-th quantile for "Student's t" distribution function.
- p
the p-th quantile, e.g., 95 (95%)
- pr
parameter for the degrees of freedom
- See also
wp.csiro.au/alanmiller/toms/cacm396.f90 -------------------------------------------------------------------------
-
def
studentTInv2(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "Student's t" distribution function.
Compute the 'p'-th quantile for "Student's t" distribution function. This algorithm is less accurate than the one above. ------------------------------------------------------------------------- It is a transliteration of the 'STUDTP' function given in Appendix C
- p
the p-th quantile, e.g., 95 (95%)
- pr
parameter for the degrees of freedom
- See also
"Principles of Discrete Event Simulation", G. S. Fishman, Wiley, 1978. -------------------------------------------------------------------------
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
uniformInv(p: Double, pr: Parameters = null): Double
Compute the 'p'-th quantile for the Uniform distribution function.
Compute the 'p'-th quantile for the Uniform distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameters for the end-points of the
Uniform
distribution
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated