object SVD4
The SVD4
companion object.
- Alphabetic
- By Inheritance
- SVD4
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def test(a: MatrixD, name: String): Unit
Test the SVD4 Factorization algorithm on matrix 'a' by factoring the matrix into a left matrix u, a vector s, and a right matrix v.
Test the SVD4 Factorization algorithm on matrix 'a' by factoring the matrix into a left matrix u, a vector s, and a right matrix v. Then multiply back to recover the original matrix.
- a
the given matrix to factor
- name
the name of the test case
- def testBid(aa: MatrixD, name: String): Unit
Test the SVD4 Factorization algorithm on a bidiagonalization of matrix 'a', factoring it into a left matrix 'uu', bidiagonal matrix 'bb', and right matrix 'vv'.
Test the SVD4 Factorization algorithm on a bidiagonalization of matrix 'a', factoring it into a left matrix 'uu', bidiagonal matrix 'bb', and right matrix 'vv'. Then multiply back to recover the original matrix.
- name
the name of the test case
- def toString(): String
- Definition Classes
- AnyRef → Any
- def trailing(b: MatrixD): MatrixD
Compute the trailing 2-by-2 submatrix of 'b.t * b' without multiplying the full matrices.
Compute the trailing 2-by-2 submatrix of 'b.t * b' without multiplying the full matrices.
- b
the given bidiagonal matrix
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated