trait VectoC extends Iterable[Complex] with PartiallyOrdered[VectoC] with Vec with Error with Serializable
The VectoC
class stores and operates on Numeric Vectors of base type Complex
.
It follows the framework of gen.VectorN [T]
and is provided for performance.
- Alphabetic
- By Inheritance
- VectoC
- Serializable
- Error
- Vec
- PartiallyOrdered
- Iterable
- IterableFactoryDefaults
- IterableOps
- IterableOnceOps
- IterableOnce
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- type AsPartiallyOrdered[B] = (B) => PartiallyOrdered[B]
- Definition Classes
- PartiallyOrdered
Abstract Value Members
- abstract def *(s: (Int, Complex)): VectoC
Multiply 'this' vector by scalar 's._2' only at position 's._1', e.g., 'x * (3, 5.5)'.
Multiply 'this' vector by scalar 's._2' only at position 's._1', e.g., 'x * (3, 5.5)'.
- s
the (position, scalar) to multiply
- abstract def *(s: Complex): VectoC
Multiply 'this' vector by scalar 's'.
Multiply 'this' vector by scalar 's'.
- s
the scalar to multiply by
- abstract def *(b: VectoC): VectoC
Multiply 'this' vector by vector 'b'.
Multiply 'this' vector by vector 'b'.
- b
the vector to multiply by
- abstract def *=(s: Complex): VectoC
Multiply in-place 'this' vector and scalar 's'.
Multiply in-place 'this' vector and scalar 's'.
- s
the scalar to multiply by
- abstract def *=(b: VectoC): VectoC
Multiply in-place 'this' vector and vector 'b'.
Multiply in-place 'this' vector and vector 'b'.
- b
the vector to multiply by
- abstract def +(s: (Int, Complex)): VectoC
Add 'this' vector and scalar 's._2' only at position 's._1', e.g., 'x + (3, 5.5)'.
Add 'this' vector and scalar 's._2' only at position 's._1', e.g., 'x + (3, 5.5)'.
- s
the (position, scalar) to add
- abstract def +(s: Complex): VectoC
Add 'this' vector and scalar 's'.
Add 'this' vector and scalar 's'.
- s
the scalar to add
- abstract def +(b: VectoC): VectoC
Add 'this' vector and vector 'b'.
Add 'this' vector and vector 'b'.
- b
the vector to add
- abstract def ++(s: Complex): VectoC
Concatenate 'this' vector and scalar 's'.
Concatenate 'this' vector and scalar 's'.
- s
the scalar to be concatenated
- abstract def ++(b: VectoC): VectoC
Concatenate 'this' vector and vector' b'.
Concatenate 'this' vector and vector' b'.
- b
the vector to be concatenated
- abstract def +=(s: Complex): VectoC
Add in-place 'this' vector and scalar 's'.
Add in-place 'this' vector and scalar 's'.
- s
the scalar to add
- abstract def +=(b: VectoC): VectoC
Add in-place 'this' vector and vector 'b'.
Add in-place 'this' vector and vector 'b'.
- b
the vector to add
- abstract def -(s: (Int, Complex)): VectoC
From 'this' vector subtract scalar 's._2' only at position 's._1', e.g., 'x - (3, 5.5)'.
From 'this' vector subtract scalar 's._2' only at position 's._1', e.g., 'x - (3, 5.5)'.
- s
the (position, scalar) to subtract
- abstract def -(s: Complex): VectoC
From 'this' vector subtract scalar 's'.
From 'this' vector subtract scalar 's'.
- s
the scalar to subtract
- abstract def -(b: VectoC): VectoC
From 'this' vector subtract vector 'b'.
From 'this' vector subtract vector 'b'.
- b
the vector to subtract
- abstract def -=(s: Complex): VectoC
From 'this' vector subtract in-place scalar 's'.
From 'this' vector subtract in-place scalar 's'.
- s
the scalar to substract
- abstract def -=(b: VectoC): VectoC
From 'this' vector subtract in-place vector 'b'.
From 'this' vector subtract in-place vector 'b'.
- b
the vector to subtract
- abstract def /(s: (Int, Complex)): VectoC
Divide 'this' vector by scalar 's._2' only at position 's._1', e.g., 'x / (3, 5.5)'.
Divide 'this' vector by scalar 's._2' only at position 's._1', e.g., 'x / (3, 5.5)'.
- s
the (position, scalar) to divide
- abstract def /(s: Complex): VectoC
Divide 'this' vector by scalar 's'.
Divide 'this' vector by scalar 's'.
- s
the scalar to divide by
- abstract def /(b: VectoC): VectoC
Divide 'this' vector by vector 'b' (element-by-element).
Divide 'this' vector by vector 'b' (element-by-element).
- b
the vector to divide by
- abstract def /=(s: Complex): VectoC
Divide in-place 'this' vector and scalar 's'.
Divide in-place 'this' vector and scalar 's'.
- s
the scalar to divide by
- abstract def /=(b: VectoC): VectoC
Divide in-place 'this' vector and vector 'b'.
Divide in-place 'this' vector and vector 'b'.
- b
the vector to divide by
- abstract def _oneAt(j: Int, size: Int = dim): VectoC
Create a vector of the form (0, ...
Create a vector of the form (0, ... -1, ... 0) where the -1 is at position j.
- j
the position to place the -1
- size
the size of the vector (upper bound = size - 1)
- abstract def abs: VectoC
Return the vector that is the element-wise absolute value of 'this' vector.
- abstract def apply(): IndexedSeq[Complex]
Get 'this' vector's entire sequence/array.
- abstract def apply(r: Range): VectoC
Get 'this' vector's elements within the given range (vector slicing).
Get 'this' vector's elements within the given range (vector slicing).
- r
the given range
- abstract def apply(i: Int): Complex
Get 'this' vector's element at the 'i'-th index position.
Get 'this' vector's element at the 'i'-th index position.
- i
the given index
- abstract def argmax(s: Int, e: Int): Int
Find the argument maximum of 'this' vector (index of maximum element).
Find the argument maximum of 'this' vector (index of maximum element).
- s
the starting index (inclusive) for the search
- e
the ending index (exclusive) for the search
- abstract def argmax(e: Int = dim): Int
Find the argument maximum of 'this' vector (index of maximum element).
Find the argument maximum of 'this' vector (index of maximum element).
- e
the ending index (exclusive) for the search
- abstract def argmaxPos(e: Int = dim): Int
Return the argument maximum of 'this' vector (-1 if it's not positive).
Return the argument maximum of 'this' vector (-1 if it's not positive).
- e
the ending index (exclusive) for the search
- abstract def argmin(s: Int, e: Int): Int
Find the argument minimum of 'this' vector (index of minimum element).
Find the argument minimum of 'this' vector (index of minimum element).
- s
the starting index (inclusive) for the search
- e
the ending index (exclusive) for the search
- abstract def argmin(e: Int = dim): Int
Find the argument minimum of 'this' vector (index of minimum element).
Find the argument minimum of 'this' vector (index of minimum element).
- e
the ending index (exclusive) for the search
- abstract def argminNeg(e: Int = dim): Int
Return the argument minimum of 'this' vector (-1 if it's not negative).
Return the argument minimum of 'this' vector (-1 if it's not negative).
- e
the ending index (exclusive) for the search
- abstract def contains(x: Complex): Boolean
Determine whether 'x' is contained in 'this' vector.
Determine whether 'x' is contained in 'this' vector.
- x
the element to be checked
- abstract def copy: VectoC
Create a copy of this Vector.
- abstract def countNeg: Int
Count the number of strictly negative elements in 'this' vector.
- abstract def countPos: Int
Count the number of strictly positive elements in 'this' vector.
- abstract def countZero: Int
Count the number of zero elements in the 'this' vector.
- abstract def countinct: Int
Count the number of distinct elements in 'this' vector.
- abstract def cumulate: VectoC
Cumulate the values of 'this' vector from left to right (e.g., create a CDF from a pmf).
Cumulate the values of 'this' vector from left to right (e.g., create a CDF from a pmf). Example: (4, 2, 3, 1) --> (4, 6, 9, 10)
- abstract val dim: Int
Vector dimension
- abstract def distinct: VectoC
Create a vector consisting of the distinct elements in 'this' vector.
- abstract def dot(b: VectoC): Complex
Compute the dot product (or inner product) of 'this' vector with vector 'b'.
Compute the dot product (or inner product) of 'this' vector with vector 'b'. When b.dim > dim, the remaining elements in b are skipped. When b.dim < dim, an index out of bound exception is thrown.
- b
the other vector
- abstract def expand(more: Int = dim): VectoC
Expand the size (dim) of 'this' vector by 'more' elements.
Expand the size (dim) of 'this' vector by 'more' elements.
- more
the number of new elements to add
- abstract def filterMissing: VectoC
Filter out the missing elements of 'this' vector based on the predicate that 'e != noComplex'.
- abstract def filterPos(p: (Complex) => Boolean): IndexedSeq[Int]
Filter the elements of 'this' vector based on the unary predicate 'p', returning the index positions.
Filter the elements of 'this' vector based on the unary predicate 'p', returning the index positions.
- p
the unary predicate (
Boolean
function) to apply
- abstract def filterPos2(v2: VectoC, p: (Complex, Complex) => Boolean): IndexedSeq[(Int, Int)]
Filter the elements of 'this' vector and vector 'v2' based on the binary predicate 'p', returning the index positions for both vectors.
Filter the elements of 'this' vector and vector 'v2' based on the binary predicate 'p', returning the index positions for both vectors.
- v2
the other vector to compare with
- p
the binary predicate (
Boolean
function) to apply
- abstract def firstNeg(e: Int = dim): Int
Return the index of the first negative element in 'this' vector (-1 otherwise).
Return the index of the first negative element in 'this' vector (-1 otherwise).
- e
the ending index (exclusive) for the search
- abstract def firstPos(e: Int = dim): Int
Return the index of the first positive element in 'this' vector (-1 otherwise).
Return the index of the first positive element in 'this' vector (-1 otherwise).
- e
the ending index (exclusive) for the search
- abstract def indexOf(x: Complex, e: Int = dim): Int
Return the index of the first occurrence of element 'x' in 'this' vector, or -1 if not found.
Return the index of the first occurrence of element 'x' in 'this' vector, or -1 if not found.
- x
the given element
- e
the ending index (exclusive) for the search
- abstract def indexWhere(p: (Complex) => Boolean): Int
Find and return index of first element satisfying predicate 'p', or -1 if not found.
Find and return index of first element satisfying predicate 'p', or -1 if not found.
- p
the predicate to check
- abstract def isNonnegative: Boolean
Check whether 'this' vector is nonnegative (has no negative elements).
- abstract def isSorted: Boolean
Determine whether 'this' vector is in sorted (ascending) order.
- abstract def iterator: Iterator[Complex]
- Definition Classes
- IterableOnce
- abstract def map(f: (Complex) => Complex): VectoC
Map the elements of 'this' vector by applying the mapping function 'f'.
Map the elements of 'this' vector by applying the mapping function 'f'.
- f
the function to apply
- abstract def max(b: VectoC): VectoC
Take the maximum of 'this' vector with vector 'b' (element-by element).
Take the maximum of 'this' vector with vector 'b' (element-by element).
- b
the other vector
- abstract def max(e: Int = dim): Complex
Find the maximum element in 'this' vector.
Find the maximum element in 'this' vector.
- e
the ending index (exclusive) for the search
- abstract def min(b: VectoC): VectoC
Take the minimum of 'this' vector with vector 'b' (element-by element).
Take the minimum of 'this' vector with vector 'b' (element-by element).
- b
the other vector
- abstract def min(e: Int = dim): Complex
Find the minimum element in 'this' vector.
Find the minimum element in 'this' vector.
- e
the ending index (exclusive) for the search
- abstract def norm1: Complex
Compute the Manhattan norm (1-norm) of 'this' vector.
- abstract def normalize: VectoC
Normalize 'this' vector so that it sums to one (like a probability vector).
- abstract def normalize1: VectoC
Normalize 'this' vector to have a maximum of one.
- abstract def normalizeU: VectoC
Normalize 'this' vector so its length is one (unit vector).
- abstract def one(size: Int): VectoC
Create a one vector (all elements are one) of length 'size'.
Create a one vector (all elements are one) of length 'size'.
- size
the size of the new vector
- abstract def oneAt(j: Int, size: Int = dim): VectoC
Create a vector of the form (0, ...
Create a vector of the form (0, ... 1, ... 0) where the 1 is at position j.
- j
the position to place the 1
- size
the size of the vector (upper bound = size - 1)
- abstract def rank: VectoI
Establish the rank order of the elements in 'self' vector, e.g., (8.0, 2.0, 4.0, 6.0) is (3, 0, 1, 2).
- abstract def recip: VectoC
Return the vector containing the reciprocal of each element of 'this' vector.
- abstract def reverse(): VectoC
Reverse the order of the elements in 'this' vector.
- abstract def select(basis: Array[Int]): VectoC
Select a subset of elements of 'this' vector corresponding to a 'basis'.
Select a subset of elements of 'this' vector corresponding to a 'basis'.
- basis
the set of index positions (e.g., 0, 2, 5)
- abstract def set(u: Seq[Complex]): Unit
Set the values in 'this' vector to the values in sequence 'u'.
Set the values in 'this' vector to the values in sequence 'u'.
- u
the sequence of values to be assigned
- abstract def set(x: Complex): Unit
Set each value in 'this' vector to 'x'.
Set each value in 'this' vector to 'x'.
- x
the value to be assigned
- abstract def sort(): Unit
Sort 'this' vector in-place in ascending (non-decreasing) order.
- abstract def sort2(): Unit
Sort 'this' vector in-place in descending (non-increasing) order.
- abstract def sum: Complex
Sum the elements of 'this' vector.
- abstract def sumNE(i: Int): Complex
Sum the elements of 'this' vector skipping the 'i'-th element (Not Equal 'i').
Sum the elements of 'this' vector skipping the 'i'-th element (Not Equal 'i').
- i
the index of the element to skip
- abstract def sumPos: Complex
Sum the positive (> 0) elements of 'this' vector.
- abstract def swap(i: Int, j: Int): Unit
Swap elements 'i' and 'j' in 'this' vector.
Swap elements 'i' and 'j' in 'this' vector.
- i
the first element in the swap
- j
the second element in the swap
- abstract def toDense: VectorC
Convert 'this'
VectoC
into a dense version. - abstract def toDouble: VectoD
Convert 'this'
VectoC
into aVectoD
. - abstract def toInt: VectoI
Convert 'this'
VectoC
into aVectoI
. - abstract def toLong: VectoL
Convert 'this'
VectoC
into aVectoL
. - abstract def tryCompareTo[B >: VectoC](that: B)(implicit arg0: AsPartiallyOrdered[B]): Option[Int]
- Definition Classes
- PartiallyOrdered
- abstract def unary_-: VectoC
Return the negative of 'this' vector (unary minus).
- abstract def update(r: Range, u: VectoC): Unit
Set 'this' vector's elements over the given range (vector slicing).
Set 'this' vector's elements over the given range (vector slicing).
- r
the given range
- u
the vector to assign
- abstract def update(r: Range, x: Complex): Unit
Set 'this' vector's elements over the given range (vector slicing).
Set 'this' vector's elements over the given range (vector slicing).
- r
the given range
- x
the value to assign
- abstract def update(i: Int, x: Complex): Unit
Set 'this' vector's element at the 'i'-th index position.
Set 'this' vector's element at the 'i'-th index position.
- i
the given index
- x
the value to assign
- abstract def zero(size: Int): VectoC
Create a zero vector (all elements are zero) of length 'size'.
Create a zero vector (all elements are zero) of length 'size'.
- size
the size of the new vector
- abstract def ~^(s: Double): VectoC
Return the vector containing each element of 'this' vector raised to the s-th power.
Return the vector containing each element of 'this' vector raised to the s-th power.
- s
the scalar exponent
- abstract def ~^=(s: Double): VectoC
Raise in-place each element of 'this' vector to the 's'-th power.
Raise in-place each element of 'this' vector to the 's'-th power.
- s
the scalar exponent
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ++[B >: Complex](suffix: IterableOnce[B]): Iterable[B]
- Definition Classes
- IterableOps
- Annotations
- @inline()
- def <[B >: VectoC](that: B)(implicit arg0: AsPartiallyOrdered[B]): Boolean
- Definition Classes
- PartiallyOrdered
- def <=[B >: VectoC](that: B)(implicit arg0: AsPartiallyOrdered[B]): Boolean
- Definition Classes
- PartiallyOrdered
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def >[B >: VectoC](that: B)(implicit arg0: AsPartiallyOrdered[B]): Boolean
- Definition Classes
- PartiallyOrdered
- def >=[B >: VectoC](that: B)(implicit arg0: AsPartiallyOrdered[B]): Boolean
- Definition Classes
- PartiallyOrdered
- final def addString(b: StringBuilder): StringBuilder
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def addString(b: StringBuilder, sep: String): StringBuilder
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder
- Definition Classes
- IterableOnceOps
- def apply(iv: VectoI): VectoC
Get 'this' vector's elements that are given in the index vector.
Get 'this' vector's elements that are given in the index vector.
- iv
the index vector
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def className: String
- Attributes
- protected[this]
- Definition Classes
- Iterable
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def coll: VectoC.this.type
- Attributes
- protected
- Definition Classes
- Iterable → IterableOps
- def collect[B](pf: PartialFunction[Complex, B]): Iterable[B]
- Definition Classes
- IterableOps → IterableOnceOps
- def collectFirst[B](pf: PartialFunction[Complex, B]): Option[B]
- Definition Classes
- IterableOnceOps
- def concat[B >: Complex](suffix: IterableOnce[B]): Iterable[B]
- Definition Classes
- IterableOps
- def copyToArray[B >: Complex](xs: Array[B], start: Int, len: Int): Int
- Definition Classes
- IterableOnceOps
- def copyToArray[B >: Complex](xs: Array[B], start: Int): Int
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- def copyToArray[B >: Complex](xs: Array[B]): Int
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- def corresponds[B](that: IterableOnce[B])(p: (Complex, B) => Boolean): Boolean
- Definition Classes
- IterableOnceOps
- def count(p: (Complex) => Boolean): Int
- Definition Classes
- IterableOnceOps
- def drop(n: Int): Iterable[Complex]
- Definition Classes
- IterableOps → IterableOnceOps
- def dropRight(n: Int): Iterable[Complex]
- Definition Classes
- IterableOps
- def dropWhile(p: (Complex) => Boolean): Iterable[Complex]
- Definition Classes
- IterableOps → IterableOnceOps
- def empty: Iterable[Complex]
- Definition Classes
- IterableFactoryDefaults → IterableOps
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exists(p: (Complex) => Boolean): Boolean
- Definition Classes
- IterableOnceOps
- val fString: String
Format String used for printing vector values (change using 'setFormat') Ex: "%d,\t", "%.6g,\t" or "%12.6g,\t"
Format String used for printing vector values (change using 'setFormat') Ex: "%d,\t", "%.6g,\t" or "%12.6g,\t"
- Attributes
- protected
- def filter(p: (Complex) => Boolean): VectoC
Filter the elements of 'this' vector based on the predicate 'p', returning a new vector.
Filter the elements of 'this' vector based on the predicate 'p', returning a new vector.
- p
the predicate (
Boolean
function) to apply
- Definition Classes
- VectoC → IterableOps → IterableOnceOps
- def filterNot(pred: (Complex) => Boolean): Iterable[Complex]
- Definition Classes
- IterableOps → IterableOnceOps
- def find(p: (Complex) => Boolean): Option[Complex]
- Definition Classes
- IterableOnceOps
- def flatMap[B](f: (Complex) => IterableOnce[B]): Iterable[B]
- Definition Classes
- IterableOps → IterableOnceOps
- def flatten[B](implicit asIterable: (Complex) => IterableOnce[B]): Iterable[B]
- Definition Classes
- IterableOps → IterableOnceOps
- final def flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
- def fold[A1 >: Complex](z: A1)(op: (A1, A1) => A1): A1
- Definition Classes
- IterableOnceOps
- def foldLeft[B](z: B)(op: (B, Complex) => B): B
- Definition Classes
- IterableOnceOps
- def foldRight[B](z: B)(op: (Complex, B) => B): B
- Definition Classes
- IterableOnceOps
- def forall(p: (Complex) => Boolean): Boolean
- Definition Classes
- IterableOnceOps
- def foreach[U](f: (Complex) => U): Unit
- Definition Classes
- IterableOnceOps
- def fromSpecific(coll: IterableOnce[Complex]): Iterable[Complex]
- Attributes
- protected
- Definition Classes
- IterableFactoryDefaults → IterableOps
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def groupBy[K](f: (Complex) => K): Map[K, Iterable[Complex]]
- Definition Classes
- IterableOps
- def groupMap[K, B](key: (Complex) => K)(f: (Complex) => B): Map[K, Iterable[B]]
- Definition Classes
- IterableOps
- def groupMapReduce[K, B](key: (Complex) => K)(f: (Complex) => B)(reduce: (B, B) => B): Map[K, B]
- Definition Classes
- IterableOps
- def grouped(size: Int): Iterator[Iterable[Complex]]
- Definition Classes
- IterableOps
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def head: Complex
- Definition Classes
- IterableOps
- def headOption: Option[Complex]
- Definition Classes
- IterableOps
- def indices: Range
Produce the range of all indices (0 to one less than dim).
- def init: Iterable[Complex]
- Definition Classes
- IterableOps
- def inits: Iterator[Iterable[Complex]]
- Definition Classes
- IterableOps
- def isEmpty: Boolean
- Definition Classes
- IterableOnceOps
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isTraversableAgain: Boolean
- Definition Classes
- IterableOps → IterableOnceOps
- def iterableFactory: IterableFactory[Iterable]
- Definition Classes
- Iterable → IterableOps
- def knownSize: Int
- Definition Classes
- IterableOnce
- def last: Complex
- Definition Classes
- IterableOps
- def lastOption: Option[Complex]
- Definition Classes
- IterableOps
- def lazyZip[B](that: Iterable[B]): LazyZip2[Complex, B, VectoC.this.type]
- Definition Classes
- Iterable
- def mag: Complex
Find the element with the greatest magnitude in 'this' vector.
- def map[B](f: (Complex) => B): Iterable[B]
- Definition Classes
- IterableOps → IterableOnceOps
- def max[B >: Complex](implicit ord: Ordering[B]): Complex
- Definition Classes
- IterableOnceOps
- def maxBy[B](f: (Complex) => B)(implicit cmp: Ordering[B]): Complex
- Definition Classes
- IterableOnceOps
- def maxByOption[B](f: (Complex) => B)(implicit cmp: Ordering[B]): Option[Complex]
- Definition Classes
- IterableOnceOps
- def maxOption[B >: Complex](implicit ord: Ordering[B]): Option[Complex]
- Definition Classes
- IterableOnceOps
- def mean: Complex
Compute the mean of the elements of 'this' vector.
- def min[B >: Complex](implicit ord: Ordering[B]): Complex
- Definition Classes
- IterableOnceOps
- def minBy[B](f: (Complex) => B)(implicit cmp: Ordering[B]): Complex
- Definition Classes
- IterableOnceOps
- def minByOption[B](f: (Complex) => B)(implicit cmp: Ordering[B]): Option[Complex]
- Definition Classes
- IterableOnceOps
- def minOption[B >: Complex](implicit ord: Ordering[B]): Option[Complex]
- Definition Classes
- IterableOnceOps
- final def mkString: String
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def mkString(sep: String): String
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def mkString(start: String, sep: String, end: String): String
- Definition Classes
- IterableOnceOps
- val nd: Double
Number of elements in the vector as a Complex
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def newSpecificBuilder: Builder[Complex, Iterable[Complex]]
- Attributes
- protected
- Definition Classes
- IterableFactoryDefaults → IterableOps
- def nonEmpty: Boolean
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- def norm: Complex
Compute the Euclidean norm (2-norm) of 'this' vector.
- def normSq: Complex
Compute the Euclidean norm (2-norm) squared of 'this' vector.
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def partition(p: (Complex) => Boolean): (Iterable[Complex], Iterable[Complex])
- Definition Classes
- IterableOps
- def partitionMap[A1, A2](f: (Complex) => Either[A1, A2]): (Iterable[A1], Iterable[A2])
- Definition Classes
- IterableOps
- def pot(b: VectoC): Complex
Compute the dot product (or inner product) of 'this' vector with vector 'b' zero-padded.
Compute the dot product (or inner product) of 'this' vector with vector 'b' zero-padded.
- b
the other vector
- def product[B >: Complex](implicit num: Numeric[B]): B
- Definition Classes
- IterableOnceOps
- def pvariance: Complex
Compute the population variance of the elements of 'this' vector.
Compute the population variance of the elements of 'this' vector. This is also the (biased) MLE estimator for sample variance.
- val range: Range
Range for the storage array
- def reduce[B >: Complex](op: (B, B) => B): B
- Definition Classes
- IterableOnceOps
- def reduceLeft[B >: Complex](op: (B, Complex) => B): B
- Definition Classes
- IterableOnceOps
- def reduceLeftOption[B >: Complex](op: (B, Complex) => B): Option[B]
- Definition Classes
- IterableOnceOps
- def reduceOption[B >: Complex](op: (B, B) => B): Option[B]
- Definition Classes
- IterableOnceOps
- def reduceRight[B >: Complex](op: (Complex, B) => B): B
- Definition Classes
- IterableOnceOps
- def reduceRightOption[B >: Complex](op: (Complex, B) => B): Option[B]
- Definition Classes
- IterableOnceOps
- def reorder(rnk: VectoI): VectoC
Return the elements in 'this' vector in the given rank order 'rnk'.
Return the elements in 'this' vector in the given rank order 'rnk'.
- rnk
the given rank order
- def reversed: Iterable[Complex]
- Attributes
- protected
- Definition Classes
- IterableOnceOps
- def rot(b: VectoC)(from: Int = b.dim - 1): Complex
Compute the dot product (or inner product) of 'this' vector with vector 'b' reversed.
Compute the dot product (or inner product) of 'this' vector with vector 'b' reversed. zero-padded and reversed.
- b
the other vector
- def sameDimensions(b: VectoC): Boolean
Check whether the other vector 'b' is at least as long as 'this' vector.
Check whether the other vector 'b' is at least as long as 'this' vector.
- b
the other vector
- def scan[B >: Complex](z: B)(op: (B, B) => B): Iterable[B]
- Definition Classes
- IterableOps
- def scanLeft[B](z: B)(op: (B, Complex) => B): Iterable[B]
- Definition Classes
- IterableOps → IterableOnceOps
- def scanRight[B](z: B)(op: (Complex, B) => B): Iterable[B]
- Definition Classes
- IterableOps
- def select(basis: VectoI): VectoC
Select a subset of elements of 'this' vector corresponding to a 'basis'.
Select a subset of elements of 'this' vector corresponding to a 'basis'.
- basis
the set of index positions (e.g., 0, 2, 5)
- def selectEx(basis: VectoI): VectoC
Select all elements of 'this' vector excluding ones in the 'basis'.
Select all elements of 'this' vector excluding ones in the 'basis'.
- basis
the index positions to be excluded
- def selectEx(basis: Array[Int]): VectoC
Select all elements of 'this' vector excluding ones in the 'basis'.
Select all elements of 'this' vector excluding ones in the 'basis'.
- basis
the index positions to be excluded
- def setFormat(newFormat: String): Unit
Set the format to the 'newFormat' (e.g., "%.6g,\t" or "%12.6g,\t").
Set the format to the 'newFormat' (e.g., "%.6g,\t" or "%12.6g,\t").
- newFormat
the new format String
- def size: Int
Return the size (number of elements) of 'this' vector.
- def sizeCompare(that: Iterable[_]): Int
- Definition Classes
- IterableOps
- def sizeCompare(otherSize: Int): Int
- Definition Classes
- IterableOps
- final def sizeIs: SizeCompareOps
- Definition Classes
- IterableOps
- Annotations
- @inline()
- def slice(rg: Range): VectoC
Slice 'this' vector over the given range 'rg'.
Slice 'this' vector over the given range 'rg'.
- rg
the range specifying the slice
- def slice(from: Int, till: Int = dim): VectoC
Slice 'this' vector 'from' to 'end'.
Slice 'this' vector 'from' to 'end'. Override in implementing classes.
- from
the start of the slice (included)
- till
the end of the slice (excluded)
- Definition Classes
- VectoC → IterableOps → IterableOnceOps
- def sliceEx(rg: Range): VectoC
Slice 'this' vector excluding the given range 'rg'.
Slice 'this' vector excluding the given range 'rg'.
- rg
the excluded range of the slice
- def sliding(size: Int, step: Int): Iterator[Iterable[Complex]]
- Definition Classes
- IterableOps
- def sliding(size: Int): Iterator[Iterable[Complex]]
- Definition Classes
- IterableOps
- def span(p: (Complex) => Boolean): (Iterable[Complex], Iterable[Complex])
- Definition Classes
- IterableOps → IterableOnceOps
- def split(basis: VectoI): (VectoC, VectoC)
Split the elements of 'this' vector into two vectors, one including the 'basis' and the other excluding the 'basis'.
Split the elements of 'this' vector into two vectors, one including the 'basis' and the other excluding the 'basis'.
- basis
the index positions to be included/excluded
- def split(basis: Array[Int]): (VectoC, VectoC)
Split the elements of 'this' vector into two vectors, one including the 'basis' and the other excluding the 'basis'.
Split the elements of 'this' vector into two vectors, one including the 'basis' and the other excluding the 'basis'.
- basis
the index positions to be included/excluded
- def split(k: Int): Array[VectoC]
Split 'this' vector into 'k' arrays of equal sizes (perhaps except for the last one).
Split 'this' vector into 'k' arrays of equal sizes (perhaps except for the last one).
- k
the number of pieces the vector is to be split into
- def splitAt(n: Int): (Iterable[Complex], Iterable[Complex])
- Definition Classes
- IterableOps → IterableOnceOps
- def sq: VectoC
Return the vector containing the square of each element of 'this' vector.
- def stepper[S <: Stepper[_]](implicit shape: StepperShape[Complex, S]): S
- Definition Classes
- IterableOnce
- def stringPrefix: String
- Attributes
- protected[this]
- Definition Classes
- Iterable
- Annotations
- @deprecatedOverriding()
- def sum[B >: Complex](implicit num: Numeric[B]): B
- Definition Classes
- IterableOnceOps
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def tail: Iterable[Complex]
- Definition Classes
- IterableOps
- def tails: Iterator[Iterable[Complex]]
- Definition Classes
- IterableOps
- def take(n: Int): Iterable[Complex]
- Definition Classes
- IterableOps → IterableOnceOps
- def takeRight(n: Int): Iterable[Complex]
- Definition Classes
- IterableOps
- def takeWhile(p: (Complex) => Boolean): Iterable[Complex]
- Definition Classes
- IterableOps → IterableOnceOps
- def tapEach[U](f: (Complex) => U): Iterable[Complex]
- Definition Classes
- IterableOps → IterableOnceOps
- def to[C1](factory: Factory[Complex, C1]): C1
- Definition Classes
- IterableOnceOps
- def toArray[B >: Complex](implicit arg0: ClassTag[B]): Array[B]
- Definition Classes
- IterableOnceOps
- final def toBuffer[B >: Complex]: Buffer[B]
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- def toIndexedSeq: IndexedSeq[Complex]
- Definition Classes
- IterableOnceOps
- final def toIterable: VectoC.this.type
- Definition Classes
- Iterable → IterableOps
- def toList: List[Complex]
- Definition Classes
- IterableOnceOps
- def toMap[K, V](implicit ev: <:<[Complex, (K, V)]): Map[K, V]
- Definition Classes
- IterableOnceOps
- def toSeq: Seq[Complex]
- Definition Classes
- IterableOnceOps
- def toSet[B >: Complex]: Set[B]
- Definition Classes
- IterableOnceOps
- def toString(): String
- Definition Classes
- Iterable → AnyRef → Any
- def toVector: Vector[Complex]
- Definition Classes
- IterableOnceOps
- def transpose[B](implicit asIterable: (Complex) => Iterable[B]): Iterable[Iterable[B]]
- Definition Classes
- IterableOps
- def unzip[A1, A2](implicit asPair: (Complex) => (A1, A2)): (Iterable[A1], Iterable[A2])
- Definition Classes
- IterableOps
- def unzip3[A1, A2, A3](implicit asTriple: (Complex) => (A1, A2, A3)): (Iterable[A1], Iterable[A2], Iterable[A3])
- Definition Classes
- IterableOps
- def variance: Complex
Compute the (unbiased) sample variance of the elements of 'this' vector.
- def view: View[Complex]
- Definition Classes
- IterableOps
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def withFilter(p: (Complex) => Boolean): WithFilter[Complex, Iterable]
- Definition Classes
- IterableOps
- def zip[B](that: IterableOnce[B]): Iterable[(Complex, B)]
- Definition Classes
- IterableOps
- def zipAll[A1 >: Complex, B](that: Iterable[B], thisElem: A1, thatElem: B): Iterable[(A1, B)]
- Definition Classes
- IterableOps
- def zipWithIndex: Iterable[(Complex, Int)]
- Definition Classes
- IterableOps → IterableOnceOps
- def ∙(b: VectoC): Complex
Compute the dot product (or inner product) of 'this' vector with vector 'b'.
Compute the dot product (or inner product) of 'this' vector with vector 'b'. When b.dim > dim, the remaining elements in b are skipped. When b.dim < dim, an index out of bound exception is thrown.
- b
the other vector
- def ≠(b: VectoC): Boolean
Compare 'this' vector with that vector 'b' for inequality.
Compare 'this' vector with that vector 'b' for inequality.
- b
that vector
- def ≤(b: VectoC): Boolean
Compare 'this' vector with that vector 'b' for less than or equal to.
Compare 'this' vector with that vector 'b' for less than or equal to.
- b
that vector
- def ≥(b: VectoC): Boolean
Compare 'this' vector with that vector 'b' for greater than or equal to.
Compare 'this' vector with that vector 'b' for greater than or equal to.
- b
that vector
Deprecated Value Members
- def ++:[B >: Complex](that: IterableOnce[B]): Iterable[B]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use ++ instead of ++: for collections of type Iterable
- final def /:[B](z: B)(op: (B, Complex) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use foldLeft instead of /:
- final def :\[B](z: B)(op: (Complex, B) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use foldRight instead of :\
- def aggregate[B](z: => B)(seqop: (B, Complex) => B, combop: (B, B) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0)
aggregate
is not relevant for sequential collections. UsefoldLeft(z)(seqop)
instead.
- def companion: IterableFactory[Iterable]
- Definition Classes
- IterableOps
- Annotations
- @deprecated @deprecatedOverriding() @inline()
- Deprecated
(Since version 2.13.0) Use iterableFactory instead
- final def copyToBuffer[B >: Complex](dest: Buffer[B]): Unit
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use
dest ++= coll
instead
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- def hasDefiniteSize: Boolean
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Check .knownSize instead of .hasDefiniteSize for more actionable information (see scaladoc for details)
- final def repr: Iterable[Complex]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use coll instead of repr in a collection implementation, use the collection value itself from the outside
- def seq: VectoC.this.type
- Definition Classes
- Iterable
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Iterable.seq always returns the iterable itself
- final def toIterator: Iterator[Complex]
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator instead of .toIterator
- final def toStream: Stream[Complex]
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .to(LazyList) instead of .toStream
- final def toTraversable: Traversable[Complex]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use toIterable instead
- def view(from: Int, until: Int): View[Complex]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .view.slice(from, until) instead of .view(from, until)