class SymTriMatrixD extends MatriD with Error with Serializable
The SymTriMatrixD
class stores and operates on symmetric tridiagonal matrices.
The elements are of type of Double
. A matrix is stored as two vectors:
the diagonal vector and the sub-diagonal vector.
- Alphabetic
- By Inheritance
- SymTriMatrixD
- Serializable
- MatriD
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new SymTriMatrixD(b: MatriD)
Construct a symmetric tridiagonal matrix from the given matrix.
Construct a symmetric tridiagonal matrix from the given matrix.
- b
the matrix of values to assign
- new SymTriMatrixD(v1: VectoD, v2: VectoD)
Construct a symmetric tridiagonal matrix with the given diagonal and sub-diagonal.
Construct a symmetric tridiagonal matrix with the given diagonal and sub-diagonal.
- v1
the diagonal vector
- v2
the sub-diagonal vector
- new SymTriMatrixD(d1: Int)
- d1
the first/row dimension (symmetric => d2 = d1)
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- def *(x: Double): SymTriMatrixD
Multiply 'this' tridiagonal matrix by scalar 'x'.
Multiply 'this' tridiagonal matrix by scalar 'x'.
- x
the scalar to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def *(u: VectoD): VectorD
Multiply 'this' tridiagonal matrix by vector 'u'.
Multiply 'this' tridiagonal matrix by vector 'u'.
- u
the vector to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def *(b: SymTriMatrixD): MatrixD
Multiply 'this' tridiagonal matrix by matrix 'b'.
Multiply 'this' tridiagonal matrix by matrix 'b'. Requires 'b' to have type
SymTriMatrixD
, but returns a more general type of matrix.- b
the matrix to multiply by
- def *(b: MatriD): SymTriMatrixD
Multiply 'this' tridiagonal matrix by matrix 'b'.
Multiply 'this' tridiagonal matrix by matrix 'b'.
- b
the matrix to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def **(u: VectoD): MatrixD
Multiply 'this' tridiagonal matrix by vector 'u' to produce another matrix 'a_ij * u_j'.
Multiply 'this' tridiagonal matrix by vector 'u' to produce another matrix 'a_ij * u_j'. E.g., multiply a diagonal matrix represented as a vector by a matrix.
- u
the vector to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def **(b: MatriD): MatriD
Multiply 'this' matrix by matrix 'b' elementwise (Hadamard product).
Multiply 'this' matrix by matrix 'b' elementwise (Hadamard product).
- b
the matrix to multiply by
- Definition Classes
- MatriD
- See also
en.wikipedia.org/wiki/Hadamard_product_(matrices) FIX - remove ??? and implement in all implementing classes
- def **:(u: VectoD): MatrixD
Multiply vector 'u' by 'this' tridiagonal matrix to produce another matrix 'u_i * a_ij'.
Multiply vector 'u' by 'this' tridiagonal matrix to produce another matrix 'u_i * a_ij'. E.g., multiply a diagonal matrix represented as a vector by a matrix. This operator is right associative.
- u
the vector to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def **=(u: VectoD): MatrixD
Multiply in-place 'this' tridiagonal matrix by vector 'u' to produce another matrix 'a_ij * u_j'.
Multiply in-place 'this' tridiagonal matrix by vector 'u' to produce another matrix 'a_ij * u_j'. E.g., multiply a diagonal matrix represented as a vector by a matrix.
- u
the vector to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def *:(u: VectoD): VectoD
Multiply (row) vector 'u' by 'this' matrix.
Multiply (row) vector 'u' by 'this' matrix. Note '*:' is right associative. vector = vector *: matrix
- u
the vector to multiply by
- Definition Classes
- MatriD
- def *=(x: Double): SymTriMatrixD
Multiply in-place 'this' tridiagonal matrix by scalar 'x'.
Multiply in-place 'this' tridiagonal matrix by scalar 'x'.
- x
the scalar to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def *=(b: MatriD): SymTriMatrixD
Multiply in-place 'this' tridiagonal matrix by matrix 'b'.
Multiply in-place 'this' tridiagonal matrix by matrix 'b'.
- b
the matrix to multiply by
- Definition Classes
- SymTriMatrixD → MatriD
- def +(x: Double): SymTriMatrixD
Add 'this' tridiagonal matrix and scalar 'x'.
Add 'this' tridiagonal matrix and scalar 'x'.
- x
the scalar to add
- Definition Classes
- SymTriMatrixD → MatriD
- def +(u: VectoD): MatrixD
Add 'this' tridiagonal matrix and (row) vector 'u'.
Add 'this' tridiagonal matrix and (row) vector 'u'.
- u
the vector to add
- Definition Classes
- SymTriMatrixD → MatriD
- def +(b: MatriD): SymTriMatrixD
Add 'this' tridiagonal matrix and matrix 'b'.
Add 'this' tridiagonal matrix and matrix 'b'.
- b
the matrix to add (requires 'leDimensions')
- Definition Classes
- SymTriMatrixD → MatriD
- def ++(b: MatriD): SymTriMatrixD
Concatenate (row-wise) 'this' matrix and matrix 'b'.
Concatenate (row-wise) 'this' matrix and matrix 'b'.
- b
the matrix to be concatenated as the new last rows in new matrix
- Definition Classes
- SymTriMatrixD → MatriD
- def ++^(b: MatriD): SymTriMatrixD
Concatenate (column-wise) 'this' matrix and matrix 'b'.
Concatenate (column-wise) 'this' matrix and matrix 'b'.
- b
the matrix to be concatenated as the new last columns in new matrix
- Definition Classes
- SymTriMatrixD → MatriD
- def +:(u: VectoD): SymTriMatrixD
Concatenate (row) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.
Concatenate (row) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.
- u
the vector to be prepended as the new first row in new matrix
- Definition Classes
- SymTriMatrixD → MatriD
- def +=(x: Double): SymTriMatrixD
Add in-place 'this' tridiagonal matrix and scalar 'x'.
Add in-place 'this' tridiagonal matrix and scalar 'x'.
- x
the scalar to add
- Definition Classes
- SymTriMatrixD → MatriD
- def +=(u: VectoD): MatrixD
Add in-place 'this' tridiagonal matrix and (row) vector 'u'.
Add in-place 'this' tridiagonal matrix and (row) vector 'u'.
- u
the vector to add
- Definition Classes
- SymTriMatrixD → MatriD
- def +=(b: MatriD): SymTriMatrixD
Add in-place 'this' tridiagonal matrix and matrix 'b'.
Add in-place 'this' tridiagonal matrix and matrix 'b'.
- b
the matrix to add (requires 'leDimensions')
- Definition Classes
- SymTriMatrixD → MatriD
- def +^:(u: VectoD): SymTriMatrixD
Concatenate (column) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.
Concatenate (column) vector 'u' and 'this' matrix, i.e., prepend 'u' to 'this'.
- u
the vector to be prepended as the new first column in new matrix
- Definition Classes
- SymTriMatrixD → MatriD
- def -(x: Double): SymTriMatrixD
From 'this' tridiagonal matrix subtract scalar 'x'.
From 'this' tridiagonal matrix subtract scalar 'x'.
- x
the scalar to subtract
- Definition Classes
- SymTriMatrixD → MatriD
- def -(u: VectoD): MatrixD
From 'this' tridiagonal matrix subtract (row) vector 'u'.
From 'this' tridiagonal matrix subtract (row) vector 'u'.
- u
the vector to subtract
- Definition Classes
- SymTriMatrixD → MatriD
- def -(b: MatriD): SymTriMatrixD
From 'this' tridiagonal matrix subtract matrix 'b'.
From 'this' tridiagonal matrix subtract matrix 'b'.
- b
the matrix to subtract (requires 'leDimensions')
- Definition Classes
- SymTriMatrixD → MatriD
- def -=(x: Double): SymTriMatrixD
From 'this' tridiagonal matrix subtract in-place scalar 'x'.
From 'this' tridiagonal matrix subtract in-place scalar 'x'.
- x
the scalar to subtract
- Definition Classes
- SymTriMatrixD → MatriD
- def -=(u: VectoD): MatrixD
From 'this' tridiagonal matrix subtract in-place (row) vector 'u'.
From 'this' tridiagonal matrix subtract in-place (row) vector 'u'.
- u
the vector to subtract
- Definition Classes
- SymTriMatrixD → MatriD
- def -=(b: MatriD): SymTriMatrixD
From 'this' tridiagonal matrix subtract in-place matrix 'b'.
From 'this' tridiagonal matrix subtract in-place matrix 'b'.
- b
the matrix to subtract (requires 'leDimensions')
- Definition Classes
- SymTriMatrixD → MatriD
- def /(x: Double): SymTriMatrixD
Divide 'this' tridiagonal matrix by scalar 'x'.
Divide 'this' tridiagonal matrix by scalar 'x'.
- x
the scalar to divide by
- Definition Classes
- SymTriMatrixD → MatriD
- def /=(x: Double): SymTriMatrixD
Divide in-place 'this' tridiagonal matrix by scalar 'x'.
Divide in-place 'this' tridiagonal matrix by scalar 'x'.
- x
the scalar to divide by
- Definition Classes
- SymTriMatrixD → MatriD
- def :+(u: VectoD): SymTriMatrixD
Concatenate 'this' matrix and (row) vector 'u', i.e., append 'u' to 'this'.
Concatenate 'this' matrix and (row) vector 'u', i.e., append 'u' to 'this'.
- u
the vector to be appended as the new last row in new matrix
- Definition Classes
- SymTriMatrixD → MatriD
- def :^+(u: VectoD): SymTriMatrixD
Concatenate 'this' matrix and (column) vector 'u', i.e., append 'u' to 'this'.
Concatenate 'this' matrix and (column) vector 'u', i.e., append 'u' to 'this'.
- u
the vector to be appended as the new last column in new matrix
- Definition Classes
- SymTriMatrixD → MatriD
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def apply(ir: Range, jr: Range): SymTriMatrixD
Get a slice 'this' tridiagonal matrix row-wise on range 'ir' and column-wise on range 'jr'.
Get a slice 'this' tridiagonal matrix row-wise on range 'ir' and column-wise on range 'jr'. Ex: b = a(2..4, 3..5)
- ir
the row range
- jr
the column range
- Definition Classes
- SymTriMatrixD → MatriD
- def apply(i: Int): VectorD
Get 'this' tridiagonal matrix's vector at the 'i'-th index position ('i'-th row).
Get 'this' tridiagonal matrix's vector at the 'i'-th index position ('i'-th row).
- i
the row index
- Definition Classes
- SymTriMatrixD → MatriD
- def apply(i: Int, j: Int): Double
Get 'this' tridiagonal matrix's element at the 'i,j'-th index position.
Get 'this' tridiagonal matrix's element at the 'i,j'-th index position.
- i
the row index
- j
the column index
- Definition Classes
- SymTriMatrixD → MatriD
- def apply(iv: VectoI): MatriD
Get the rows indicated by the index vector 'iv' FIX - implement in all implementing classes
Get the rows indicated by the index vector 'iv' FIX - implement in all implementing classes
- iv
the vector of row indices
- Definition Classes
- MatriD
- def apply(i: Int, jr: Range): VectoD
Get a slice 'this' matrix row-wise at index 'i' and column-wise on range 'jr'.
Get a slice 'this' matrix row-wise at index 'i' and column-wise on range 'jr'. Ex: u = a(2, 3..5)
- i
the row index
- jr
the column range
- Definition Classes
- MatriD
- def apply(ir: Range, j: Int): VectoD
Get a slice 'this' matrix row-wise on range 'ir' and column-wise at index j.
Get a slice 'this' matrix row-wise on range 'ir' and column-wise at index j. Ex: u = a(2..4, 3)
- ir
the row range
- j
the column index
- Definition Classes
- MatriD
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def at(i: Int, j: Int): Double
Get 'this' tridiagonal matrix's element at the 'i,j'-th index position, returning 0, if off tridiagonal.
Get 'this' tridiagonal matrix's element at the 'i,j'-th index position, returning 0, if off tridiagonal.
- i
the row index
- j
the column index
- def bsolve(y: VectoD): VectorD
Solve for 'x' using back substitution in the equation 'u*x = y' where 'this' matrix ('u') is upper triangular (see 'lud' above).
Solve for 'x' using back substitution in the equation 'u*x = y' where 'this' matrix ('u') is upper triangular (see 'lud' above).
- y
the constant vector
- Definition Classes
- SymTriMatrixD → MatriD
- def clean(thres: Double, relative: Boolean = true): SymTriMatrixD
Clean values in 'this' tridiagonal matrix at or below the threshold by setting them to zero.
Clean values in 'this' tridiagonal matrix at or below the threshold by setting them to zero. Iterative algorithms give approximate values and if very close to zero, may throw off other calculations, e.g., in computing eigenvectors.
- thres
the cutoff threshold (a small value)
- relative
whether to use relative or absolute cutoff
- Definition Classes
- SymTriMatrixD → MatriD
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def col(col: Int, from: Int = 0): VectorD
Get column 'col' from 'this' tridiagonal matrix, returning it as a vector.
Get column 'col' from 'this' tridiagonal matrix, returning it as a vector.
- col
the column to extract from the matrix
- from
the position to start extracting from
- Definition Classes
- SymTriMatrixD → MatriD
- def copy: SymTriMatrixD
Create an exact copy of 'this' m-by-n symmetric tridiagonal matrix.
Create an exact copy of 'this' m-by-n symmetric tridiagonal matrix.
- Definition Classes
- SymTriMatrixD → MatriD
- val d1: Int
- def det: Double
Compute the determinant of 'this' tridiagonal matrix.
Compute the determinant of 'this' tridiagonal matrix.
- Definition Classes
- SymTriMatrixD → MatriD
- def dg: VectorD
Get the diagonal of 'this' tridiagonal matrix.
- def dg_(v: VectorD): Unit
Set the diagonal of 'this' tridiagonal matrix.
Set the diagonal of 'this' tridiagonal matrix.
- v
the vector to assign to the diagonal
- def diag(p: Int, q: Int): SymTriMatrixD
Form a matrix '[Ip, this, Iq]' where Ir is a r-by-r identity matrix, by positioning the three matrices 'Ip', 'this' and 'Iq' along the diagonal.
Form a matrix '[Ip, this, Iq]' where Ir is a r-by-r identity matrix, by positioning the three matrices 'Ip', 'this' and 'Iq' along the diagonal. Fill the rest of matrix with zeros.
- p
the size of identity matrix Ip
- q
the size of identity matrix Iq
- Definition Classes
- SymTriMatrixD → MatriD
- def diag(b: MatriD): MatriD
Combine 'this' tridiagonal matrix with matrix 'b', placing them along the diagonal and filling in the bottom left and top right regions with zeros: '[this, b]'.
Combine 'this' tridiagonal matrix with matrix 'b', placing them along the diagonal and filling in the bottom left and top right regions with zeros: '[this, b]'.
- b
the matrix to combine with 'this' tridiagonal matrix
- Definition Classes
- SymTriMatrixD → MatriD
- lazy val dim1: Int
Dimension 1
Dimension 1
- Definition Classes
- SymTriMatrixD → MatriD
- lazy val dim2: Int
Dimension 2
Dimension 2
- Definition Classes
- SymTriMatrixD → MatriD
- def dot(b: MatriD): VectorD
Compute the dot product of 'this' matrix with matrix 'b' to produce a vector.
Compute the dot product of 'this' matrix with matrix 'b' to produce a vector.
- b
the second matrix of the dot product
- Definition Classes
- SymTriMatrixD → MatriD
- def dot(b: SymTriMatrixD): VectorD
Compute the dot product of 'this' matrix with matrix 'b' to produce a vector.
Compute the dot product of 'this' matrix with matrix 'b' to produce a vector.
- b
the second matrix of the dot product
- def dot(u: VectoD): VectorD
Compute the dot product of 'this' tridiagonal matrix and vector 'u', by first transposing 'this' tridiagonal matrix and then multiplying by 'u' (i.e., 'a dot u = a.t * u').
Compute the dot product of 'this' tridiagonal matrix and vector 'u', by first transposing 'this' tridiagonal matrix and then multiplying by 'u' (i.e., 'a dot u = a.t * u'). Since 'this' is symmetric, the result is the same as 'a * u'.
- u
the vector to multiply by (requires same first dimensions)
- Definition Classes
- SymTriMatrixD → MatriD
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- val fString: String
Format string used for printing vector values (change using 'setFormat')
Format string used for printing vector values (change using 'setFormat')
- Attributes
- protected
- Definition Classes
- MatriD
- def flatten: VectoD
Flatten 'this' matrix in row-major fashion, returning a vector containing all the elements from the matrix.
Flatten 'this' matrix in row-major fashion, returning a vector containing all the elements from the matrix.
- Definition Classes
- MatriD
- final def flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
- def foreach[U](f: (Array[Double]) => U): Unit
Iterate over 'this' matrix row by row applying method 'f'.
Iterate over 'this' matrix row by row applying method 'f'.
- f
the function to apply
- Definition Classes
- MatriD
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def getDiag(k: Int = 0): VectorD
Get the 'k'th diagonal of 'this' tridiagonal matrix.
Get the 'k'th diagonal of 'this' tridiagonal matrix. Assumes 'dim2 >= dim1'.
- k
how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)
- Definition Classes
- SymTriMatrixD → MatriD
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def inverse: MatriD
Invert 'this' tridiagonal matrix.
Invert 'this' tridiagonal matrix.
- Definition Classes
- SymTriMatrixD → MatriD
- See also
www.amm.shu.edu.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=4339
- def inverse_ip(): SymTriMatrixD
Invert in-place 'this' matrix (requires a 'squareMatrix') and use partial pivoting.
Invert in-place 'this' matrix (requires a 'squareMatrix') and use partial pivoting.
- Definition Classes
- SymTriMatrixD → MatriD
- def isBidiagonal: Boolean
Check whether 'this' matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal).
Check whether 'this' matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal). The method may be overriding for efficiency.
- Definition Classes
- MatriD
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isNonnegative: Boolean
Check whether 'this' tridiagonal matrix is nonnegative (has no negative elements).
Check whether 'this' tridiagonal matrix is nonnegative (has no negative elements).
- Definition Classes
- SymTriMatrixD → MatriD
- def isRectangular: Boolean
Check whether 'this' tridiagonal matrix is rectangular (all rows have the same number of columns).
Check whether 'this' tridiagonal matrix is rectangular (all rows have the same number of columns).
- Definition Classes
- SymTriMatrixD → MatriD
- def isSquare: Boolean
Check whether 'this' matrix is square (same row and column dimensions).
Check whether 'this' matrix is square (same row and column dimensions).
- Definition Classes
- MatriD
- def isSymmetric: Boolean
Check whether 'this' tridiagonal matrix is symmetric.
Check whether 'this' tridiagonal matrix is symmetric.
- Definition Classes
- SymTriMatrixD → MatriD
- def isTridiagonal: Boolean
Check whether 'this' tridiagonal matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal).
Check whether 'this' tridiagonal matrix is bidiagonal (has non-zero elements only in main diagonal and super-diagonal). The method may be overriding for efficiency.
- Definition Classes
- SymTriMatrixD → MatriD
- def leDimensions(b: MatriD): Boolean
Check whether 'this' matrix dimensions are less than or equal to 'le' those of the other matrix 'b'.
Check whether 'this' matrix dimensions are less than or equal to 'le' those of the other matrix 'b'.
- b
the other matrix
- Definition Classes
- MatriD
- def lowerT: SymTriMatrixD
Return the lower triangular of 'this' matrix (rest are zero).
Return the lower triangular of 'this' matrix (rest are zero).
- Definition Classes
- SymTriMatrixD → MatriD
- def lud_ip(): (MatriD, MatriD)
Factor in-place 'this' matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.
Factor in-place 'this' matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.
- Definition Classes
- SymTriMatrixD → MatriD
- def lud_npp: (MatriD, MatriD)
Factor 'this' tridiagonal matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Factorization algorithm.
Factor 'this' tridiagonal matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Factorization algorithm. 'l' is lower bidiagonal and 'u' is upper bidiagonal. FIX: would be more efficient to use tridiagonal matrices than dense matrices.
- Definition Classes
- SymTriMatrixD → MatriD
- See also
www.webpages.uidaho.edu/~barannyk/Teaching/LU_factorization_tridiagonal.pdf
- def mag: Double
Find the magnitude of 'this' matrix, the element value farthest from zero.
Find the magnitude of 'this' matrix, the element value farthest from zero.
- Definition Classes
- MatriD
- def map(f: (VectoD) => VectoD): MatriD
Map the elements of 'this' matrix by applying the mapping function 'f'.
Map the elements of 'this' matrix by applying the mapping function 'f'. FIX - remove ??? and implement in all implementing classes
- f
the function to apply
- Definition Classes
- MatriD
- def max(e: Int = dim1): Double
Find the maximum element in 'this' tridiagonal matrix.
Find the maximum element in 'this' tridiagonal matrix.
- e
the ending row index (exclusive) for the search
- Definition Classes
- SymTriMatrixD → MatriD
- def mdot(b: MatriD): MatrixD
Compute the matrix dot product of 'this' matrix with matrix 'b' to produce a matrix.
Compute the matrix dot product of 'this' matrix with matrix 'b' to produce a matrix.
- b
the second matrix of the dot product
- Definition Classes
- SymTriMatrixD → MatriD
- def mdot(b: SymTriMatrixD): MatrixD
Compute the matrix dot product of 'this' matrix with matrix 'b' to produce a matrix.
Compute the matrix dot product of 'this' matrix with matrix 'b' to produce a matrix.
- b
the second matrix of the dot product
- def mean: VectoD
Compute the column means of 'this' matrix.
Compute the column means of 'this' matrix.
- Definition Classes
- MatriD
- def meanNZ: VectoD
Compute the column means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).
Compute the column means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).
- Definition Classes
- MatriD
- def meanR: VectoD
Compute the row means of 'this' matrix.
Compute the row means of 'this' matrix.
- Definition Classes
- MatriD
- def meanRNZ: VectoD
Compute the row means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).
Compute the row means of 'this' matrix ignoring zero elements (e.g., a zero may indicate a missing value as in recommender systems).
- Definition Classes
- MatriD
- def min(e: Int = dim1): Double
Find the minimum element in 'this' tridiagonal matrix.
Find the minimum element in 'this' tridiagonal matrix.
- e
the ending row index (exclusive) for the search
- Definition Classes
- SymTriMatrixD → MatriD
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def norm1: Double
Compute the 1-norm of 'this' matrix, i.e., the maximum 1-norm of the column vectors.
Compute the 1-norm of 'this' matrix, i.e., the maximum 1-norm of the column vectors. This is useful for comparing matrices '(a - b).norm1'.
- Definition Classes
- MatriD
- See also
en.wikipedia.org/wiki/Matrix_norm
- def normF: Double
Compute the Frobenius-norm of 'this' matrix, i.e., the square root of the sum of the squared values over all the elements (sqrt (sse)).
Compute the Frobenius-norm of 'this' matrix, i.e., the square root of the sum of the squared values over all the elements (sqrt (sse)). FIX: for
MatriC
should take absolute values, first.- Definition Classes
- MatriD
- See also
en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
- def normFSq: Double
Compute the sqaure of the Frobenius-norm of 'this' matrix, i.e., the sum of the squared values over all the elements (sse).
Compute the sqaure of the Frobenius-norm of 'this' matrix, i.e., the sum of the squared values over all the elements (sse). FIX: for
MatriC
should take absolute values, first.- Definition Classes
- MatriD
- See also
en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
- def normINF: Double
Compute the (infinity) INF-norm of 'this' matrix, i.e., the maximum 1-norm of the row vectors.
Compute the (infinity) INF-norm of 'this' matrix, i.e., the maximum 1-norm of the row vectors.
- Definition Classes
- MatriD
- See also
en.wikipedia.org/wiki/Matrix_norm
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def nullspace: VectorD
Compute the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.
Compute the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.
nullspace (a) = set of orthogonal vectors v s.t. a * v = 0
The left nullspace of matrix 'a' is the same as the right nullspace of 'a.t'. FIX: need a more robust algorithm for computing nullspace (@see Fac_QR.scala). FIX: remove the 'n = m+1' restriction.
- Definition Classes
- SymTriMatrixD → MatriD
- See also
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces
/solving-ax-0-pivot-variables-special-solutions/MIT18_06SCF11_Ses1.7sum.pdf
- def nullspace_ip(): VectorD
Compute in-place the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.
Compute in-place the (right) nullspace of 'this' 'm-by-n' matrix (requires 'n = m+1') by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.
nullspace (a) = set of orthogonal vectors v s.t. a * v = 0
The left nullspace of matrix 'a' is the same as the right nullspace of 'a.t'. FIX: need a more robust algorithm for computing nullspace (@see Fac_QR.scala). FIX: remove the 'n = m+1' restriction.
- Definition Classes
- SymTriMatrixD → MatriD
- See also
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces
/solving-ax-0-pivot-variables-special-solutions/MIT18_06SCF11_Ses1.7sum.pdf
- val range1: Range
Range for the storage array on dimension 1 (rows)
Range for the storage array on dimension 1 (rows)
- Definition Classes
- MatriD
- val range2: Range
Range for the storage array on dimension 2 (columns)
Range for the storage array on dimension 2 (columns)
- Definition Classes
- MatriD
- def reduce: SymTriMatrixD
Use Gauss-Jordan reduction on 'this' matrix to make the left part embed an identity matrix.
Use Gauss-Jordan reduction on 'this' matrix to make the left part embed an identity matrix. A constraint on 'this' m by n matrix is that n >= m.
- Definition Classes
- SymTriMatrixD → MatriD
- def reduce_ip(): SymTriMatrixD
Use Gauss-Jordan reduction in-place on 'this' matrix to make the left part embed an identity matrix.
Use Gauss-Jordan reduction in-place on 'this' matrix to make the left part embed an identity matrix. A constraint on 'this' m by n matrix is that n >= m.
- Definition Classes
- SymTriMatrixD → MatriD
- def sameCrossDimensions(b: MatriD): Boolean
Check whether 'this' matrix and the other matrix 'b' have the same cross dimensions.
Check whether 'this' matrix and the other matrix 'b' have the same cross dimensions.
- b
the other matrix
- Definition Classes
- MatriD
- def sameDimensions(b: MatriD): Boolean
Check whether 'this' matrix and the other matrix 'b' have the same dimensions.
Check whether 'this' matrix and the other matrix 'b' have the same dimensions.
- b
the other matrix
- Definition Classes
- MatriD
- def sd: VectorD
Get the sub-diagonal of 'this' tridiagonal matrix.
- def sd_(v: VectorD): Unit
Set the sub-diagonal of 'this' tridiagonal matrix.
Set the sub-diagonal of 'this' tridiagonal matrix.
- v
the vector to assign to the sub-diagonal
- def selectCols(colIndex: Array[Int]): SymTriMatrixD
Select columns from 'this' tridiagonal matrix according to the given index/basis.
Select columns from 'this' tridiagonal matrix according to the given index/basis. Ex: Can be used to divide a matrix into a basis and a non-basis.
- colIndex
the column index positions (e.g., (0, 2, 5))
- Definition Classes
- SymTriMatrixD → MatriD
- def selectRows(rowIndex: Array[Int]): SymTriMatrixD
Select rows from 'this' tridiagonal matrix according to the given index/basis.
Select rows from 'this' tridiagonal matrix according to the given index/basis.
- rowIndex
the row index positions (e.g., (0, 2, 5))
- Definition Classes
- SymTriMatrixD → MatriD
- def selectRows(rowIndex: VectoI): MatriD
Select rows from 'this' matrix according to the given index/basis 'rowIndex'.
Select rows from 'this' matrix according to the given index/basis 'rowIndex'.
- rowIndex
the row index positions (e.g., (0, 2, 5))
- Definition Classes
- MatriD
- def selectRowsEx(rowIndex: VectoI): MatriD
Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.
Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.
- rowIndex
the row indices to exclude
- Definition Classes
- MatriD
- def selectRowsEx(rowIndex: Array[Int]): MatriD
Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.
Select all rows from 'this' matrix excluding the rows from the given 'rowIndex'.
- rowIndex
the row indices to exclude
- Definition Classes
- MatriD
- def set(i: Int, u: VectoD, j: Int = 0): Unit
Set 'this' tridiagonal matrix's 'i'th row starting at column 'j' to the vector 'u'.
Set 'this' tridiagonal matrix's 'i'th row starting at column 'j' to the vector 'u'.
- i
the row index
- u
the vector value to assign
- j
the starting column index
- Definition Classes
- SymTriMatrixD → MatriD
- def set(u: MatriD): Unit
Set the values in 'this' matrix as copies of the values in matrix 'u'.
Set the values in 'this' matrix as copies of the values in matrix 'u'.
- u
the matrix of values to assign
- Definition Classes
- SymTriMatrixD → MatriD
- def set(u: Array[Array[Double]]): Unit
Set all the values in 'this' tridiagonal matrix as copies of the values in 2D array 'u'.
Set all the values in 'this' tridiagonal matrix as copies of the values in 2D array 'u'. Ignore parts of array not corresponding to tridiagonal.
- u
the 2D array of values to assign
- Definition Classes
- SymTriMatrixD → MatriD
- def set(x: Double): Unit
Set all the elements in 'this' tridiagonal matrix to the scalar 'x'.
Set all the elements in 'this' tridiagonal matrix to the scalar 'x'.
- x
the scalar value to assign
- Definition Classes
- SymTriMatrixD → MatriD
- def setCol(col: Int, u: VectoD): Unit
Set column 'col' of 'this' tridiagonal matrix to a vector.
Set column 'col' of 'this' tridiagonal matrix to a vector.
- col
the column to set
- u
the vector to assign to the column
- Definition Classes
- SymTriMatrixD → MatriD
- def setDiag(x: Double): Unit
Set the main diagonal of 'this' tridiagonal matrix to the scalar 'x'.
Set the main diagonal of 'this' tridiagonal matrix to the scalar 'x'. Assumes 'dim2 >= dim1'.
- x
the scalar to set the diagonal to
- Definition Classes
- SymTriMatrixD → MatriD
- def setDiag(u: VectoD, k: Int = 0): Unit
Set the 'k'th diagonal of 'this' tridiagonal matrix to the vector 'u'.
Set the 'k'th diagonal of 'this' tridiagonal matrix to the vector 'u'. Assumes 'dim2 >= dim1'.
- u
the vector to set the diagonal to
- k
how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)
- Definition Classes
- SymTriMatrixD → MatriD
- def setFormat(newFormat: String): Unit
Set the format to the 'newFormat'.
- def slice(r_from: Int, r_end: Int, c_from: Int, c_end: Int): SymTriMatrixD
Slice 'this' tridiagonal matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'.
Slice 'this' tridiagonal matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'.
- r_from
the start of the row slice
- r_end
the end of the row slice
- c_from
the start of the column slice
- c_end
the end of the column slice
- Definition Classes
- SymTriMatrixD → MatriD
- def slice(from: Int, end: Int): SymTriMatrixD
Slice 'this' tridiagonal matrix row-wise 'from' to 'end'.
Slice 'this' tridiagonal matrix row-wise 'from' to 'end'.
- from
the start row of the slice (inclusive)
- end
the end row of the slice (exclusive)
- Definition Classes
- SymTriMatrixD → MatriD
- def slice(rg: Range): MatriD
Slice 'this' matrix row-wise over the given range 'rg'.
Slice 'this' matrix row-wise over the given range 'rg'.
- rg
the range specifying the slice
- Definition Classes
- MatriD
- def sliceCol(from: Int, end: Int): SymTriMatrixD
Slice 'this' tridiagonal matrix column-wise 'from' to 'end'.
Slice 'this' tridiagonal matrix column-wise 'from' to 'end'.
- from
the start column of the slice (inclusive)
- end
the end column of the slice (exclusive)
- Definition Classes
- SymTriMatrixD → MatriD
- def sliceEx(row: Int, col: Int): SymTriMatrixD
Slice 'this' tridiagonal matrix excluding the given 'row' and 'col'umn.
Slice 'this' tridiagonal matrix excluding the given 'row' and 'col'umn.
- row
the row to exclude
- col
the column to exclude
- Definition Classes
- SymTriMatrixD → MatriD
- def sliceEx(rg: Range): MatriD
Slice 'this' matrix row-wise excluding the given range 'rg'.
Slice 'this' matrix row-wise excluding the given range 'rg'.
- rg
the excluded range of the slice
- Definition Classes
- MatriD
- def solve(b: VectoD): VectoD
Solve for 'x' in the equation 'a*x = b' where 'a' is 'this' tridiagonal matrix, using the Thomas Algorithm.
Solve for 'x' in the equation 'a*x = b' where 'a' is 'this' tridiagonal matrix, using the Thomas Algorithm. Caveat: Stability vs. diagonal dominance. This method is more efficient, since a 'lud_npp' creates dense matrices.
- b
the constant vector
- Definition Classes
- SymTriMatrixD → MatriD
- See also
en.wikibooks.org/wiki/Algorithm_Implementation/Linear_Algebra/Tridiagonal_matrix_algorithm
- def solve(l: MatriD, u: MatriD, b: VectoD): VectoD
Solve for 'x' in the equation 'a*x = l*u*x = b' (see 'lud_npp' above).
Solve for 'x' in the equation 'a*x = l*u*x = b' (see 'lud_npp' above).
- l
the lower triangular matrix
- u
the upper triangular matrix
- b
the constant vector
- Definition Classes
- SymTriMatrixD → MatriD
- def solve(lu: (MatriD, MatriD), b: VectoD): VectoD
Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).
Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).
- lu
the lower and upper triangular matrices
- b
the constant vector
- Definition Classes
- MatriD
- def splitRows(rowIndex: VectoI): (MatriD, MatriD)
Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.
Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.
- rowIndex
the row indices to include/exclude
- Definition Classes
- MatriD
- def splitRows(rowIndex: Array[Int]): (MatriD, MatriD)
Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.
Split the rows from 'this' matrix to form two matrices, one from the rows in 'rowIndex' and the other from rows not in 'rowIndex'.
- rowIndex
the row indices to include/exclude
- Definition Classes
- MatriD
- def sum: Double
Compute the sum of 'this' tridiagonal matrix, i.e., the sum of its elements.
Compute the sum of 'this' tridiagonal matrix, i.e., the sum of its elements.
- Definition Classes
- SymTriMatrixD → MatriD
- def sumAbs: Double
Compute the 'abs' sum of 'this' tridiagonal matrix, i.e., the sum of the absolute value of its elements.
Compute the 'abs' sum of 'this' tridiagonal matrix, i.e., the sum of the absolute value of its elements. This is useful for comparing matrices '(a - b).sumAbs'.
- Definition Classes
- SymTriMatrixD → MatriD
- def sumLower: Double
Compute the sum of the lower triangular region of 'this' tridiagonal matrix.
Compute the sum of the lower triangular region of 'this' tridiagonal matrix.
- Definition Classes
- SymTriMatrixD → MatriD
- def swap(i: Int, k: Int, col: Int = 0): Unit
Swap the elements in rows 'i' and 'k' starting from column 'col'.
Swap the elements in rows 'i' and 'k' starting from column 'col'.
- i
the first row in the swap
- k
the second row in the swap
- col
the starting column for the swap (default 0 => whole row)
- Definition Classes
- MatriD
- def swapCol(j: Int, l: Int, row: Int = 0): Unit
Swap the elements in columns 'j' and 'l' starting from row 'row'.
Swap the elements in columns 'j' and 'l' starting from row 'row'.
- j
the first column in the swap
- l
the second column in the swap
- row
the starting row for the swap (default 0 => whole column)
- Definition Classes
- MatriD
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def t: SymTriMatrixD
Transpose 'this' tridiagonal matrix (rows => columns).
Transpose 'this' tridiagonal matrix (rows => columns). Note, since the matrix is symmetric, it returns itself.
- Definition Classes
- SymTriMatrixD → MatriD
- def toDense: MatrixD
Convert 'this' tridiagonal matrix to a dense matrix.
Convert 'this' tridiagonal matrix to a dense matrix.
- Definition Classes
- SymTriMatrixD → MatriD
- def toDouble: SymTriMatrixD
Convert 'this'
SymTriMatrixD
into a double matrixSymTriMatrixD
.Convert 'this'
SymTriMatrixD
into a double matrixSymTriMatrixD
.- Definition Classes
- SymTriMatrixD → MatriD
- def toInt: SymTriMatrixI
Convert 'this'
SymTriMatrixD
into an integer matrixSymTriMatrixI
.Convert 'this'
SymTriMatrixD
into an integer matrixSymTriMatrixI
.- Definition Classes
- SymTriMatrixD → MatriD
- def toString(): String
Convert 'this' tridiagonal matrix to a string showing the diagonal vector followed by the sub-diagonal vector.
Convert 'this' tridiagonal matrix to a string showing the diagonal vector followed by the sub-diagonal vector.
- Definition Classes
- SymTriMatrixD → AnyRef → Any
- def trace: Double
Compute the trace of 'this' tridiagonal matrix, i.e., the sum of the elements on the main diagonal.
Compute the trace of 'this' tridiagonal matrix, i.e., the sum of the elements on the main diagonal. Should also equal the sum of the eigenvalues.
- Definition Classes
- SymTriMatrixD → MatriD
- See also
Eigen.scala
- def update(ir: Range, jr: Range, b: MatriD): Unit
Set a slice 'this' tridiagonal matrix row-wise on range 'ir' and column-wise on range 'jr'.
Set a slice 'this' tridiagonal matrix row-wise on range 'ir' and column-wise on range 'jr'. Ex: a(2..4, 3..5) = b
- ir
the row range
- jr
the column range
- b
the matrix to assign
- Definition Classes
- SymTriMatrixD → MatriD
- def update(i: Int, u: VectoD): Unit
Set 'this' tridiagonal matrix's row at the 'i'-th index position to the vector 'u'.
Set 'this' tridiagonal matrix's row at the 'i'-th index position to the vector 'u'.
- i
the row index
- u
the vector value to assign
- Definition Classes
- SymTriMatrixD → MatriD
- def update(i: Int, j: Int, x: Double): Unit
Set 'this' tridiagonal matrix's element at the 'i,j'-th index position to the scalar 'x'.
Set 'this' tridiagonal matrix's element at the 'i,j'-th index position to the scalar 'x'.
- i
the row index
- j
the column index
- x
the scalar value to assign
- Definition Classes
- SymTriMatrixD → MatriD
- def update(i: Int, jr: Range, u: VectoD): Unit
Set a slice of 'this' matrix row-wise at index 'i' and column-wise on range 'jr' to vector 'u'.
Set a slice of 'this' matrix row-wise at index 'i' and column-wise on range 'jr' to vector 'u'. Ex: a(2, 3..5) = u
- i
the row index
- jr
the column range
- u
the vector to assign
- Definition Classes
- MatriD
- def update(ir: Range, j: Int, u: VectoD): Unit
Set a slice of 'this' matrix row-wise on range 'ir' and column-wise at index 'j' to vector 'u'.
Set a slice of 'this' matrix row-wise on range 'ir' and column-wise at index 'j' to vector 'u'. Ex: a(2..4, 3) = u
- ir
the row range
- j
the column index
- u
the vector to assign
- Definition Classes
- MatriD
- def upperT: SymTriMatrixD
Return the upper triangular of 'this' matrix (rest are zero).
Return the upper triangular of 'this' matrix (rest are zero).
- Definition Classes
- SymTriMatrixD → MatriD
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write(fileName: String): Unit
Write 'this' tridiagonal matrix to a CSV-formatted text file with name 'fileName'.
Write 'this' tridiagonal matrix to a CSV-formatted text file with name 'fileName'.
- fileName
the name of file to hold the data
- Definition Classes
- SymTriMatrixD → MatriD
- def zero(m: Int = dim1, n: Int = dim2): SymTriMatrixD
Create an m-by-n symmetric tridiagonal matrix with all elements initialized to zero.
Create an m-by-n symmetric tridiagonal matrix with all elements initialized to zero.
- m
the number of rows
- n
the number of columns
- Definition Classes
- SymTriMatrixD → MatriD
- def ~^(p: Int): SymTriMatrixD
Raise 'this' tridiagonal matrix to the 'p'th power (for some integer 'p' >= 2).
Raise 'this' tridiagonal matrix to the 'p'th power (for some integer 'p' >= 2).
- p
the power to raise this tridiagonal matrix to
- Definition Classes
- SymTriMatrixD → MatriD
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated